Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Mol Pharm ; 21(7): 3643-3660, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38885973

ABSTRACT

Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.


Subject(s)
Cholesterol , Cobalt , Ergosterol , Lipid Bilayers , Liposomes , Ergosterol/chemistry , Cobalt/chemistry , Liposomes/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force
2.
Article in English | MEDLINE | ID: mdl-38923477

ABSTRACT

Human sperm functioning is crucial for maintaining natural reproduction, but its sterility is enhanced by variations in environmental conditions. Because of these agitating properties, powerful computer-aided devices are required, but their precision is inadequate, particularly when it comes to samples with low sperm concentrations. Therefore, for the first time, this article introduces the sulfide material-based structure for the detection of human sperm samples using the prism-based surface plasmon resonance sensor (SPR) Nano-biosensor. The proposed structure is designed on the basis of a prism-based Kretschmann configuration and includes silver, silicon, a sulfide layer, black phosphorus, and a sensing medium. This work takes advantage of the excitement of surface plasmons and evanescent waves in the metal dielectric region. For the detection process, seven sperm samples are taken, with their concentration, mobility, and refractive index measured by the refractometer. The proposed structure provides a maximum sensitivity of 409.17°/RIU, QF of 97.45RIU-1 and a DA of 1.37. The results provide a substantial improvement in comparison to the reported work in the literature.

3.
Theor Appl Genet ; 136(11): 230, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875695

ABSTRACT

KEY MESSAGE: Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L. were genotyped with cottonSNP63K array and phenotyped for photoperiod sensitivity under long day-length conditions. The genetic diversity analysis using 26,952 polymorphic SNPs indicated a progressively narrowed diversity from the landraces (0.230) to the DIV panel accessions (0.195) and FB panel (0.116). Structure analysis in the US germplasm identified seven subpopulations representing all four major regions of the US cotton belt. Three subpopulations were identified within the landrace accessions. The highest fixation index (FST) of 0.65 was found between landrace accessions of Guatemala and the Plains-type cultivars from Southwest cotton region while the lowest FST values were between the germplasms of Mid-South and Southeastern regions. Genome wide association studies (GWAS) of photoperiod response using 600 phenotyped accessions identified 14 marker trait associations spread across eight Upland cotton chromosomes. Six of these marker trait associations, on four chromosomes (A10, D04, D05, and D06), showed significant epistatic interactions. Targeted genomic analysis identified regions with 19 candidate genes including Transcription factor Vascular Plant One-Zinc Finger 1 (VOZ1) and Protein Photoperiod-Independent Early Flowering 1 (PIE1) genes. Genetic diversity and genome wide analyses of photoperiod sensitivity in diverse cotton germplasms will enable the use of genomic tools to systematically utilize the tropical germplasm and its beneficial alleles for broadening the genetic base in Upland cotton.


Subject(s)
Genome-Wide Association Study , Gossypium , Gossypium/genetics , Photoperiod , Plant Breeding , Polymorphism, Single Nucleotide , Cotton Fiber
4.
Foods ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107419

ABSTRACT

Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.

5.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36831947

ABSTRACT

Wearable sensors are pioneering devices to monitor health issues that allow the constant monitoring of physical and biological parameters. The immunity towards electromagnetic interference, miniaturization, detection of nano-volumes, integration with fiber, high sensitivity, low cost, usable in harsh environments and corrosion-resistant have made optical wearable sensor an emerging sensing technology in the recent year. This review presents the progress made in the development of novel wearable optical sensors for vital health monitoring systems. The details of different substrates, sensing platforms, and biofluids used for the detection of target molecules are discussed in detail. Wearable technologies could increase the quality of health monitoring systems at a nominal cost and enable continuous and early disease diagnosis. Various optical sensing principles, including surface-enhanced Raman scattering, colorimetric, fluorescence, plasmonic, photoplethysmography, and interferometric-based sensors, are discussed in detail for health monitoring applications. The performance of optical wearable sensors utilizing two-dimensional materials is also discussed. Future challenges associated with the development of optical wearable sensors for point-of-care applications and clinical diagnosis have been thoroughly discussed.


Subject(s)
Wearable Electronic Devices , Monitoring, Physiologic/methods , Electrocardiography , Technology , Fluorescence
6.
Front Microbiol ; 13: 962619, 2022.
Article in English | MEDLINE | ID: mdl-36060785

ABSTRACT

Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.

7.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807321

ABSTRACT

Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.


Subject(s)
Breast Neoplasms , Foeniculum , Breast Neoplasms/drug therapy , Female , Humans , Ligands , Limonene , Molecular Docking Simulation
8.
Colloids Surf B Biointerfaces ; 217: 112621, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35714508

ABSTRACT

Curcumin has shown remarkable therapeutic utilization for various medical conditions. Still, its limited chemical stability and rapid hydrolysis capped its applications to a certain extent. Approaches have been made in the past to surpass these shortcomings by encapsulating the drug in surfactant-based micelles or liposomes and so far, natural surfactants have been used to do this bidding. Through this report, we are presenting curcumin entrapped inside synthetic metal-based liposomal assembly (metallosomes) based on hybrid-surfactants known as metallosurfactants (MS). Three metallosomes i.e. metallosomes (a), (b), and (c) were synthesized with increasing cholesterol (Chl) ratio w.r.t MS (MS:Chl 1:0, 1:0.5, and 1:1). Firstly, the membrane properties of the metallosomes were studied in the absence of the drug. The studies confirmed the direct influence of Chl concentration on the membrane properties and the metallosomes were found to be more hydrophobic, rigid, homogenous, stable, and less fluid with Chl incorporation. These studies were proven beneficial when drug-loaded metallosomes were studied and metallosomes (c), with the highest Chl content, emerged as the maximum drug loader due to their most hydrophobic nature. However, the drug was released at the slowest rate for this metallosomal system due to its less fluid and more rigid nature. On the other hand, these metallosomes were more efficient for shielding entrapped drug from acidic and alkaline environs as lesser drug degradation was observed in the experiments compared to the free curcumin. These metallosomes also exhibited efficient interactional behavior with bacterial (MRSA) DNA.


Subject(s)
Curcumin , Liposomes , Cholesterol/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Liposomes/chemistry , Micelles , Phospholipids/chemistry , Surface-Active Agents/chemistry
9.
Adv Colloid Interface Sci ; 302: 102621, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276534

ABSTRACT

In advanced biomedical diagnosis, various supramolecular assemblies based on inorganic-organic hybrids have found great interest as functional materials. These assemblies describe a new field of metallovesicles where the introduction of metal ions enables the chemical manipulation of assemblies in terms of their structural stability, redox activity, and pH stability. Additionally, they mimic the elaborative architecture of natural liposomal assemblies and exhibit hierarchical morphologies, and promise novel functions. With the constant developments in this field, various supramolecular assemblies such as MCsomes, Polymersomes, and Metallosomes, etc. came into existence. These hybrid assemblies have been utilized for several applications such as drug delivery, MRI contrasting, DNA delivery, and catalytic activity. The key advantage of these assemblies is their ability to deliver therapeutics to specific locations due to their biomimetic properties and release their contents at the desired time. Hence, they provide a valuable platform for the treatment of a variety of diseases. Through the present article, we intend to provide insights into the latest developments made in this field. This modularity underscores the tremendous promise of supramolecular assemblies as an emerging interdisciplinary research branch at the interface of chemistry and biological sciences.


Subject(s)
Drug Delivery Systems
11.
PLoS One ; 17(3): e0265420, 2022.
Article in English | MEDLINE | ID: mdl-35298541

ABSTRACT

Human papillomavirus (HPV) induced cervical cancer is becoming a major cause of mortality in women. The present research aimed to identify the natural inhibitors of HPV-18 E1 protein (1R9W) from Himalayan herbs with lesser toxicity and higher potency. In this study, one hundred nineteen phytoconstituents of twenty important traditional medicinal plants of Northwest Himalayas were selected for molecular docking with the target protein 1R9W of HPV-18 E1 Molecular docking was performed by AutoDock vina software. ADME/T screening of the bioactive phytoconstituents was done by SwissADME, admetSAR, and Protox II. A couple of best protein-ligand complexes were selected for 100 ns MD simulation. Molecular docking results revealed that among all the selected phytoconstituents only thirty-five phytoconstituents showed the binding affinity similar or more than the standard anti-cancer drugs viz. imiquimod (-6.1 kJ/mol) and podofilox (-6.9 kJ/mol). Among all the selected thirty-five phytoconstituents, eriodictyol-7-glucuronide, stigmasterol, clicoemodin and thalirugidine showed the best interactions with a docking score of -9.1, -8.7, -8.4, and -8.4 kJ/mol. Based on the ADME screening, only two phytoconstituents namely stigmasterol and clicoemodin selected as the best inhibitor of HPV protein. MD simulation study also revealed that stigmasterol and clicoemodin were stable inside the binding pocket of 1R9W, Stigmasterol and clicoemodin can be used as a potential investigational drug to cure HPV infections.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Human papillomavirus 18 , Humans , Molecular Docking Simulation , Papillomaviridae , Stigmasterol , Uterine Cervical Neoplasms/drug therapy
12.
Appl Microbiol Biotechnol ; 106(4): 1435-1446, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35089399

ABSTRACT

L-alanine possesses extensive physiological functionality and tremendous pharmacological significance, therefore could be considered as potential ingredient for food, pharmaceutical, and personal care products. However, therapeutic properties of L-alanine still need to be addressed in detail to further strengthen its utilization as a viable ingredient for developing natural therapeutics with minimum side effects. Thus, the present study was aimed to explore the anticipated therapeutic potential of L-alanine, produced microbially using a lactic acid bacterial strain Pediococcus acidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme. The anticipated therapeutic potential of L-alanine was assessed in terms of anti-proliferative, anti-bacterial, and anti-urolithiatic properties. Anti-bacterial assays revealed that L-alanine successfully inhibited growth and in vitro proliferation of important human pathogens including Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus mutans, and Vibrio cholerae in a concentration-dependent manner. Current investigation has also revealed its significant anti-proliferative potential against human lung adenocarcinoma (A549; IC50 7.32 µM) and mammary gland adenocarcinoma (MCF-7; IC50 8.81 µM) cells. The anti-urolithiatic potential of L-alanine was augmented over three different phases, viz., nucleation inhibition, aggregation inhibition, and oxalate depletion. Further, an in vitro cell culture-based kidney stone dissolution model using HEK293-T cells was also established to further strengthen its anti-urolithiatic potential. This is probably the first in vitro cell culture-based model which experimentally validates the immense therapeutic efficacy of L-alanine in treating urolithiasis disease. KEY POINTS: • Assessment of therapeutic potential of L-alanine produced by LAB. • L-alanine exhibited significant anti-proliferative and anti-bacterial activities. • L-alanine as potential anti-urolithiatic agent.


Subject(s)
Pediococcus acidilactici , Alanine/pharmacology , Enterococcus faecalis , HEK293 Cells , Humans , Pediococcus , Staphylococcus aureus
13.
Biosens Bioelectron ; 197: 113805, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801795

ABSTRACT

Optical biosensors are rapid, real-time, and portable, have a low detection limit and a high sensitivity, and have a great potential for diagnosing various types of cancer. Optical biosensors can detect cancer in a few million malignant cells, in comparison to conventional diagnosis techniques that use 1 billion cells in tumor tissue with a diameter of 7 nm-10 nm. Current cancer detection methods are also costly, inconvenient, complex, time consuming, and require technical specialists. This review focuses on recent advances in optical biosensors for early detection of cancer. It is primarily concerned with advancements in the design of various biosensors using resonance, scattering, chemiluminescence, luminescence, interference, fluorescence, absorbance or reflectance, and various fiber types. The development of various two-dimensional materials with optical properties such as biocompatibility, field enhancement, and a higher surface-to-volume ratio, as well as advancements in microfabrication technologies, have accelerated the development of optical sensors for early detection of cancer and other diseases. Surface enhanced Raman spectroscopy technology has the potential to detect a single molecule with high specificity, and terahertz waves are a recently explored technology for cancer detection. Due to the low electromagnetic interference, small size, multiplexing, and remote sensing capabilities of optical fiber-based platforms, they may be a driving force behind the rapid development of biosensors. The advantages and disadvantages of existing and future optical biosensor designs for cancer detection are discussed in detail. Additionally, a prospect for future advancements in the development of optical biosensors for point-of-care and clinical applications is highlighted.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Luminescence , Neoplasms/diagnosis , Optical Fibers , Spectrum Analysis, Raman
15.
Molecules ; 26(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361824

ABSTRACT

Functional foods or drinks prepared using lactic acid bacteria (LAB) have recently gained considerable attention because they can offer additional nutritional and health benefits. The present study aimed to develop functional drinks by the fermentation of buttermilk and soymilk preparations using the Pediococcus acidilactici BD16 (alaD+) strain expressing the L-alanine dehydrogenase enzyme. LAB fermentation was carried out for 24 h and its impact on the physicochemical and quality attributes of the fermented drinks was evaluated. Levels of total antioxidants, phenolics, flavonoids, and especially L-alanine enhanced significantly after LAB fermentation. Further, GC-MS-based metabolomic fingerprinting was performed to identify the presence of bioactive metabolites such as 1,2-benzenedicarboxylic acid, 1-dodecene, 2-aminononadecane, 3-octadecene, 4-octen-3-one, acetic acid, azanonane, benzaldehyde, benzoic acid, chloroacetic acid, colchicine, heptadecanenitrile, hexadecanal, quercetin, and triacontane, which could be accountable for the improvement of organoleptic attributes and health benefits of the drinks. Meanwhile, the levels of certain undesirable metabolites such as 1-pentadecene, 2-bromopropionic acid, 8-heptadecene, formic acid, and propionic acid, which impart bitterness, rancidity, and unpleasant odor to the fermented drinks, were reduced considerably after LAB fermentation. This study is probably the first of its kind that highlights the application of P. acidilactici BD16 (alaD+) as a starter culture candidate for the production of functional buttermilk and soymilk.


Subject(s)
Buttermilk/analysis , Fermentation , Pediococcus acidilactici/growth & development , Soy Milk/methods , Buttermilk/microbiology , Pediococcus acidilactici/metabolism , Soy Milk/chemistry
16.
Foods ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34441741

ABSTRACT

Metabolic engineering substantially aims at the development of more efficient, robust and industrially competitive microbial strains for the potential applications in food, fermentation and pharmaceutical industries. An efficient lab scale bioprocess was developed for high level fermentative production of L-alanine using metabolically engineered Pediococcus acidilactici BD16 (alaD+). Computational biology tools assisted the designing of a synthetic alaD gene cassette, which was further cloned in shuttle vector pLES003 and expressed using an auto-inducible P289 promoter. Further, L-alanine production in the recombinant P. acidilactici BD16 (alaD+) strain was carried out using fed-batch fermentation under oxygen depression conditions, which significantly enhanced L-alanine levels. The recombinant strain expressing the synthetic alaD gene produced 229.12 g/L of L-alanine after 42 h of fed-batch fermentation, which is the second highest microbial L-alanine titer reported so far. After extraction and crystallization, 95% crystal L-alanine (217.54 g/L) was recovered from the culture broth with an enantiomeric purity of 97%. The developed bioprocess using recombinant P. acidilactici BD16 (alaD+) is suggested as the best alternative to chemical-based commercial synthesis of L-alanine for potential industrial applications.

17.
PLoS One ; 16(3): e0248116, 2021.
Article in English | MEDLINE | ID: mdl-33764980

ABSTRACT

Freshwater lakes present an ecological border between humans and a variety of host organisms. The present study was designed to evaluate the microbiota composition and distribution in Dal Lake at Srinagar, India. The non-chimeric sequence reads were classified taxonomically into 49 phyla, 114 classes, 185 orders, 244 families and 384 genera. Proteobacteria was found to be the most abundant bacterial phylum in all the four samples. The highest number of observed species was found to be 3097 in sample taken from least populated area during summer (LPS) whereas the summer sample from highly populated area (HPS) was found most diverse among all as indicated by taxonomic diversity analysis. The QIIME output files were used for PICRUSt analysis to assign functional attributes. The samples exhibited a significant difference in their microbial community composition and structure. Comparative analysis of functional pathways indicated that the anthropogenic activities in populated areas and higher summer temperature, both decrease functional potential of the Lake microbiota. This is probably the first study to demonstrate the comparative taxonomic diversity and functional composition of an urban freshwater lake amid its highly populated and least populated areas during two extreme seasons (winter and summer).


Subject(s)
Bacteria/genetics , Lakes/microbiology , Metagenome , Altitude , Bacteria/classification , Bacteria/isolation & purification , Genome, Bacterial , India , Metagenomics , Microbiota
18.
Nutr Cancer ; 73(7): 1168-1174, 2021.
Article in English | MEDLINE | ID: mdl-32643413

ABSTRACT

Colon cancer risk appears to be lowered by consumption of a diet rich in fruits and vegetables. Chokeberries are rich in phytochemicals that may act as potent anticancer agents. Phytochemicals that are particularly abundant in chokeberries include anthocyanins and phenolic acids. In this study, we compared the growth inhibitory activity of three chokeberry extracts in HT-29 human colon cancer cells. The three extracts tested were derived from Aronia arbutifolia (red), Aronia prunifolia (purple), and Aronia melanocarpa (black). Cells were incubated with either red, purple, or black chokeberry extracts and cell viability was quantified using the thiazolyl blue tetrazolium bromide (MTT) assay. The black chokeberry extract had the greatest effect in reducing cell proliferation. The extracts were also characterized for total phenols (Folin-Ciocalteu assay), total antioxidant activity (oxygen radical absorbance capacity assay), and levels of bioactive phenolic acids (high-performance liquid chromatography). The growth inhibitory activities of the extracts correlated well with total phenolic content, antioxidant activity, and levels of caffeic and chlorogenic acids. The black chokeberry extract had the greatest level of total phenols, antioxidant activity, and individual phenolic acids. This research suggests that the phenolic profile of foods such as chokeberries can help determine their cancer cell growth inhibitory activity.


Subject(s)
Anthocyanins , Photinia , Anthocyanins/pharmacology , Antioxidants/pharmacology , Humans , Phenols/pharmacology , Plant Extracts/pharmacology
19.
Saudi J Biol Sci ; 27(9): 2333-2343, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32884415

ABSTRACT

Due to their vast industrial potential, cellulases have been regarded as the potential biocatalysts by both the academicians and the industrial research groups. In the present study, culturable bacterial strains of Himalayan Urban freshwater lake were investigated for cellulose degrading activities. Initially, a total of 140 bacterial strains were isolated and only 45 isolates were found to possess cellulose degrading property. On the basis of preliminary screening involving cellulase activity assay on CMC agar (with clear zone of hydrolysis) and biosafety assessment testing, only single isolate named as BKT-9 was selected for the cellulase production studies. Strain BKT-9 was characterized at the molecular level using rRNA gene sequencing and its sequence homology analysis revealed its identity as Aneurinibacillus aneurinilyticus. Further, various physico-chemical parameters and culture conditions were optimized using one factor approach to enhance cellulase production levels in the strain BKT-9. Subsequently, RSM based statistical optimization led to formulation of cellulase production medium, wherein the bacterial strain exhibited ~60 folds increase in enzyme activity as compared to un-optimized culture medium. Further studies are being suggested to scale up cellulase production in A. aneurinilyticus strain BKT-9 so that it can be utilized for biomass saccharification at an industrial level.

20.
J Genet Eng Biotechnol ; 18(1): 38, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32749538

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

SELECTION OF CITATIONS
SEARCH DETAIL
...