Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 187: 114418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763668

ABSTRACT

Interest in exploring alternative starch sources like finger millet is rising due to wide starch applications. However, native starch often lacks desired qualities, including rheological properties. Modification is thus necessary for specific end uses. Plasma treatment as a greener and sustainable method for starch modification was therefore, studied for its ability to impact rheological properties of finger millet starch (FMS). Considerable changes in the rheological properties on FMS was noted, a significant decrease and increase (p < 0.05) in the peak viscosity (from 3.35 to 0.553 Pa.s) and paste clarity respectively was observed, indicating occurrence of depolymerization. However, intermediate plasma-treated samples (200 V) observed a decrease in paste clarity attributed to aggregate formation and cross-linking. Cross-linking was also confirmed by findings of frequency sweep where a continuous decrease in G' values of plasma treated FMS gel was interrupted by sudden increase. Despite depolymerization causing alteration of rheological behaviour such as decrease in shear thinning properties, gel strength observed a contradictory increase. This was attributed to incorporation of functional group and absence of shear responsible for network formation giving higher gel strength to FMS gels. This is elaborated in detail in the study. The study thus concluded that cold plasma significantly impacted all the rheological properties of the FMS and hence can prove to be beneficial for modification of starch rheological parameters.


Subject(s)
Eleusine , Gels , Plasma Gases , Rheology , Starch , Starch/chemistry , Plasma Gases/chemistry , Viscosity , Eleusine/chemistry , Gels/chemistry , Atmospheric Pressure , Food Handling/methods
2.
Int J Biol Macromol ; 268(Pt 1): 131615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631580

ABSTRACT

This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.


Subject(s)
Amylose , Eleusine , Plasma Gases , Solubility , Starch , Starch/chemistry , Plasma Gases/chemistry , Eleusine/chemistry , Amylose/chemistry , Molecular Weight , Spectroscopy, Fourier Transform Infrared
3.
Food Res Int ; 169: 112930, 2023 07.
Article in English | MEDLINE | ID: mdl-37254356

ABSTRACT

The present study was done to analyze the effect of atmospheric pressure non-thermal pin-to-plate plasma at a range of different voltages (170, 200, and 230V) at different time intervals (10, 20, and 30 mins) on under-utilized pearl millet starch. The untreated and treated starches were analyzed for amylose content, pH, carbonyl, and carboxyl group, reducing sugar, turbidity, water, and oil binding property, pasting property, DSC, FTIR, XRD, and molecular weight. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of treated starch. There has been a significant reduction (p < 0.05) in turbidity value by 38.97% and pH value of starch from 6.49 to 4.05. Plasma-treated samples produced clearer pastes with higher stability over storage time. Cold plasma treatment also led to an increase in the ζ potential. However, there has been no significant change in the water activity and oil-binding capacity of the starch. Reducing sugar content, average molecular weight, degree of polymerization, pasting property, XRD, and FTIR data confirmed that cross-linking takes place in samples treated at lower voltages and lesser time followed by depolymerization occurring in harshly treated plasma samples. The study thus points out the possible use of cold plasma for starch modification to produce starches with altered properties.


Subject(s)
Pennisetum , Plasma Gases , Starch/chemistry , Pennisetum/metabolism , Water/chemistry , Sugars/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...