Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36305132

ABSTRACT

Anti-inflammatory therapies currently in use mainly include steroidal and non-steroidal drugs. Contrary to their side effects, the steroid hormones glucocorticoids, which are synthetic versions of natural cortisol, are nevertheless often employed to treat a variety of inflammatory disorders. Other drug class of choice is non-steroidal drugs which mainly target COX-2 and hence the synthesis of prostaglandins, particularly PGE2. To cure both the short-term effects of chronic inflammatory disorders and the long-term symptoms of acute inflammation, pharmaceutical chemists are in continuous search for more potent and less toxic agents. Apart from these two drug classes, phytochemicals are gaining the attention of researchers as source of alternative antiinflammatory agents. However, every drug class has its own advantages or disadvantages thus requiring intervention of newer approaches. Currently, drugs used for anti-inflammatory therapies are costly with low efficacy, high health risk, and socio-economic impact due to the concern issue of their toxicity. Recently, nano-drug delivery system has been experiencing main interest as a new approach for targeting therapeutic agents to the target sites in a controlled, sustained manner and has various advantages as compared to the conventional drug delivery system like, increased solubility, bioavailability, improved pharmacokinetic profile of drugs, surface area and rate of dissolution and additionally, overcomes the problems related to hydrophobicity, toxicity. Present review summarized the intervention of nanotechnology to overcome the limitations/ risk associated with current anti-inflammatory drugs of different classes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Anti-Inflammatory Agents , Humans , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Nanotechnology , Drug Delivery Systems , Chronic Disease
2.
J Xenobiot ; 12(2): 74-90, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35466214

ABSTRACT

Biopolymers such as chitosan and gum acacia are used for nanotechnological applications due to their biosafety and ecofriendly nature. The commercial fungicide mancozeb (M) was loaded into chitosan-gum acacia (CSGA) polymers to form nanocomposite (NC) CSGA-M (mancozeb-loaded) measuring 363.6 nm via the ionic gelation and polyelectrolyte complexation method. The physico-chemical study of nano CSGA-M was accomplished using dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Nano CSGA-M-1.0 (containing 1.0 mg/mL mancozeb) at 1.5 ppm demonstrated a maximum inhibition (83.8 ± 0.7%) against Alternaria solani, while Sclerotinia sclerotiorum exhibited a 100% inhibition at 1.0 and 1.5 ppm through the mycelium inhibition method. Commercial mancozeb showed an inhibition of 84.6 ± 0% and 100%, respectively, for both fungi. In pot house conditions, NCs were found to exhibit good antimicrobial activity. Disease control efficiency (DCE, in %) in pathogen-treated plants for CSGA-M-1.0 was 64.6 ± 5.0 and 60.2 ± 1.4% against early blight and stem rot diseases, respectively. NCs showed lower cytotoxicity than commercial mancozeb at the given concentration. In conclusion, both in vitro and in vivo antifungal efficacy for nano CSGA-M was found to be quite comparable but less toxic than mancozeb to Vero cell lines; thus, in the future, this formulation may be used for sustainable agriculture.

3.
Curr Top Med Chem ; 20(11): 1009-1028, 2020.
Article in English | MEDLINE | ID: mdl-32223732

ABSTRACT

Metal nanoparticles are well known for their antimicrobial properties. The use of metalbased nanoparticles in the agricultural field has considerably increased globally by both direct and indirect means for the management of plant diseases. In this context, the development of controlled delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating metal nanoparticles in a polymer matrix include the ability to function as a protector of metal nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant growth regulators used to enhance the crop productivity.


Subject(s)
Biocompatible Materials/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Anti-Infective Agents/chemistry , Crops, Agricultural/drug effects , Drug Liberation , Genetic Therapy/methods , Humans , Pesticides/chemistry , Plant Diseases/therapy , Plant Growth Regulators/chemistry
4.
Biotechnol Rep (Amst) ; 15: 11-23, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28603692

ABSTRACT

Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

5.
Int J Biol Macromol ; 93(Pt A): 988-994, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27659003

ABSTRACT

The objective of the present study was to prepare ketoconazole loaded chitosan-gellan gum (CSGG) nanoparticles and to evaluate them for antifungal activity against Aspergillus niger. Ketoconazole loaded CSGG nanoparticles were prepared by electrostatic complexation technique using chitosan (CS) as cationic polymer and gellan gum (GG) as anionic polymer with ketoconazole as drug. It was observed that the effect of gellan gum on particle size was more pronounced in comparison to chitosan and increase in its concentration resulted in a significant increase in particle size but decrease in zeta potential. Whereas, increase in concentration of chitosan resulted in increase in zeta potential. The particle size and zeta potential of optimal formulation was 155.7±26.1nm and 32.1±2.8mV which obtained at concentration of chitosan (0.02% w/v) and gellan gum (0.01% w/v). On comparative evaluation, ketoconazole loaded CSGG nanoparticles showed significantly higher antifungal activity against Aspergillus niger than dummy CSGG nanoparticles (without drug) and drug individually.


Subject(s)
Antifungal Agents/pharmacology , Ketoconazole/pharmacology , Antifungal Agents/chemistry , Aspergillus niger/drug effects , Chitosan/chemistry , Ketoconazole/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Polysaccharides, Bacterial/chemistry
6.
Int J Biol Macromol ; 72: 827-33, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25304751

ABSTRACT

Zinc oxide nanoparticles (ZnO nps) are known to be effective against a wide array of microorganisms. At nanoscale, they have higher toxicity and they need to be rendered less toxic and more biocompatible. To achieve this, ZnO nps were incorporated in nanohydrogel particles made out of sodium alginate/gum acacia and cross-linker glutaraldehyde in order to ensure their gradual and sustained release instead of burst release, and hence lowering their toxicity. The particles synthesized were in the nano-range, i.e., 70-100 nm size and their in vitro release studies indicated that release of upto 68% of ZnO nps was prolonged to over 2 weeks following the Higuchi model. Cytotoxicity studies on vero cell line (African green monkey kidney cell line) revealed that toxicity of ZnO nps-loaded nanohydrogels was substantially lower as compared to ZnO nps. At the same time, it demonstrated desired level of antibiotic activity against Pseudomonas aeruginosa, an antibiotic resistant microbial model. In conclusion, this work led to successful preparation of novel formulation of ZnO incorporated in nanohydrogels that are not only safer but also retain adequate antibacterial activity due to their ability for gradual and sustained release of the active constituent.


Subject(s)
Alginates/chemistry , Gum Arabic/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Drug Carriers/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Particle Size , Pseudomonas aeruginosa/drug effects , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...