Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 11(3): e15599, 2023 02.
Article in English | MEDLINE | ID: mdl-36750180

ABSTRACT

The aim of this study was to investigate cardiomyocyte Ca2+ handling and contractile function in freshly excised human atrial tissue from diabetic and non-diabetic patients undergoing routine surgery. Multicellular trabeculae (283 ± 20 µm in diameter) were dissected from the endocardial surface of freshly obtained right atrial appendage samples from consenting surgical patients. Trabeculae were mounted in a force transducer at optimal length, electrically stimulated to contract, and loaded with fura-2/AM for intracellular Ca2+ measurements. The response to stimulation frequencies encompassing the physiological range was recorded at 37°C. Myofilament Ca2+ sensitivity was assessed from phase plots and high potassium contractures of force against [Ca2+ ]i . Trabeculae from diabetic patients (n = 12) had increased diastolic (resting) [Ca2+ ]i (p = 0.03) and reduced Ca2+ transient amplitude (p = 0.04) when compared to non-diabetic patients (n = 11), with no difference in the Ca2+ transient time course. Diastolic stress was increased (p = 0.008) in trabeculae from diabetic patients, and peak developed stress decreased (p ≤ 0.001), which were not accounted for by reduction in the cardiomyocyte, or contractile protein, content of trabeculae. Trabeculae from diabetic patients also displayed diminished myofilament Ca2+ sensitivity (p = 0.018) compared to non-diabetic patients. Our data provides evidence of impaired calcium handling during excitation-contraction coupling with resulting contractile dysfunction in atrial tissue from patients with type 2 diabetes in comparison to the non-diabetic. This highlights the importance of targeting cardiomyocyte Ca2+ homeostasis in developing more effective treatment options for diabetic heart disease in the future.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Humans , Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Atrial Fibrillation/metabolism , Myocardial Contraction/physiology , Heart Atria/metabolism , Calcium, Dietary/metabolism , Sarcoplasmic Reticulum/metabolism
2.
Curr Res Physiol ; 6: 100098, 2023.
Article in English | MEDLINE | ID: mdl-36814643

ABSTRACT

Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether PFs and specifically TRPM4 channels, play a role in these mechanically-induced arrhythmias. Pseudo-ECGs and left ventricular (LV) activation, measured by optical mapping, were recorded in isolated, Langendorff-perfused, rat hearts. The LV endocardial surface was irrigated with experimental agents, via an indwelling catheter. The number and period of ectopic activations was measured during LV lumen inflation via an indwelling fluid-filled balloon (100 µL added over 2 s, maintained for 38 s). Mechanically-induced arrhythmias occurred during balloon inflation: they were multifocal, maximal in the first 5 s and ceased within 20 s. Optical mapping revealed activation patterns indicating PF-mediated and ectopic focal sources. Irrigation of the LV lumen with Lugol solution (IK/I2) for 10s reduced ectopics by 93% (n = 16, P < 0.001); with ablation of endocardial PFs confirmed by histology. Five min irrigation of the LV lumen with 50 µM 9-Phenanthrol, a blocker of TRPM4 channels, reduced ectopics by 39% (n = 15, P < 0.01). Immunohistochemistry confirmed that TRPM4 was more abundant in PFs than myocardium. Our results show that the endocardial surface plays an important role in these mechanically-induced ectopic activations. Ectopic activation patterns indicate a participation of PFs in these arrhythmias, with a potential involvement of TRPM4 channels, shown by the reduction of arrhythmias by 9-Phenanthrol.

3.
Curr Mol Pharmacol ; 14(3): 439-447, 2021.
Article in English | MEDLINE | ID: mdl-33494693

ABSTRACT

BACKGROUND: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. OBJECTIVE: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. METHODS: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. RESULTS: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460, respectively. The encapsulation efficiency of formulation S6 was found to be 87.25%. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96%, respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. CONCLUSION: These results reveal the potential application of novel olanzapine-NLC in intranasal drug delivery system for the treatment of Schizophrenia.


Subject(s)
Drug Carriers , Schizophrenia , Administration, Intranasal , Humans , Lipids/chemistry , Olanzapine , Schizophrenia/drug therapy
4.
Front Physiol ; 11: 193, 2020.
Article in English | MEDLINE | ID: mdl-32210837

ABSTRACT

Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the "slow force response" or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on ß-adrenergic activation (1 µM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to ß-adrenergic activation (1 µM isoproterenol).

5.
Biophys Rev ; 12(1): 135-142, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31939110

ABSTRACT

The mechanical response of the heart to myocardial stretch has been understood since the work of muscle physiologists more than 100 years ago, whereby an increase in ventricular chamber filling during diastole increases the subsequent force of contraction. The stretch-induced increase in contraction is biphasic. There is an abrupt increase in the force that coincides with the stretch (the rapid response), which is then followed by a slower response that develops over several minutes (the slow force response, or SFR). The SFR is associated with a progressive increase in the magnitude of the Ca2+ transient, the event that initiates myocyte cross-bridge cycling and force development. However, the mechanisms underlying the stretch-dependent increase in the Ca2+ transient are still debated. This review outlines recent literature on the SFR and summarizes the different stretch-activated Ca2+ entry pathways. The SFR might result from a combination of several different cellular mechanisms initiated in response to activation of different cellular stretch sensors.

6.
Curr Res Physiol ; 2: 1-11, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34746811

ABSTRACT

BACKGROUND: Prostaglandin F2α (PGF2α) has a positively inotropic effect on right ventricular (RV) trabeculae from healthy adult rat hearts, and may therefore be therapeutically useful as a non-catecholaminergic inotrope. These provide additional contractile support for the heart without the added energetic demand of increased heart rate, and are also suitable for patients with reduced ß adrenergic receptor (ß-AR) responsiveness, or impaired mitochondrial energy supply. However, the response of hypertrophied rat hearts to PGF2α has not previously been examined. Our aim was therefore to determine the effect of PGF2α on isolated perfused rat hearts with RV hypertrophy following induction of pulmonary artery hypertension. METHODS: Male Wistar rats (300 g) were injected with either 60 mg kg-1 of monocrotaline (MCT, n = 10) or sterile saline as control (CON, n = 11). Four weeks post injection; hearts were isolated and Langendorff-perfused in sinus rhythm. Measurement of left ventricular (LV) pressure and the electrocardiogram were made and the response to 0.3 µM PGF2α was determined. RESULTS: PGF2α increased LV developed pressure in CON and in 60% MCT hearts, with no change in heart rate. However, 40% of MCT hearts developed arrhythmias during the peak inotropic response. For comparison, the response to 0.03 µM isoproterenol (ISO) was also investigated. Peak LV pressure developed sooner in response to ISO compared to PGF2α in both rat groups, although the inotropic response to ISO was reduced in MCT hearts. Analysis of fixed ventricular tissue confirmed that only RV myocytes were hypertrophied in MCT hearts. Our study showed that PGF2α was positively inotropic for healthy hearts, but found it generated arrhythmias in 40% of MCT hearts at the dose investigated. However, a more physiological dose of PGF2α may be a useful alternative without the added energetic cost of catecholaminergic inotropes.

7.
Cilia ; 7: 4, 2018.
Article in English | MEDLINE | ID: mdl-30079247

ABSTRACT

BACKGROUND: A transient increase in cytosolic Ca2+ (the "Ca2+ transient") determines the degree and duration of myocyte force development in the heart. However, we have previously observed that, under the same experimental conditions, the Ca2+ transients from isolated cardiac myocytes are reduced in amplitude in comparison to those from multicellular cardiac preparations. We therefore questioned whether the enzymatic cell isolation procedure might remove structures that modulate intracellular Ca2+ in some way. Primary cilia are found in a diverse range of cell types, and have an abundance of Ca2+-permeable membrane channels that result in Ca2+ influx when activated. Although primary cilia are reportedly ubiquitous, their presence and function in the heart remain controversial. If present, we hypothesized they might provide an additional Ca2+ entry pathway in multicellular cardiac tissue that was lost during cell isolation. The aim of our study was to look for evidence of primary cilia in isolated myocytes and ventricular tissue from rat hearts. METHODS: Immunohistochemical techniques were used to identify primary cilia-specific proteins in isolated myocytes from adult rat hearts, and in tissue sections from embryonic, neonatal, young, and adult rat hearts. Either mouse anti-acetylated α-tubulin or rabbit polyclonal ARL13B antibodies were used, counterstained with Hoechst dye. Selected sections were also labelled with markers for other cell types found in the heart and for myocyte F-actin. RESULTS: No evidence of primary cilia was found in either tissue sections or isolated myocytes from adult rat ventricles. However, primary cilia were present in tissue sections from embryonic, neonatal (P2) and young (P21 and P28) rat hearts. CONCLUSION: The lack of primary cilia in adult rat hearts rules out their contribution to myocyte Ca2+ homoeostasis by providing a Ca2+ entry pathway. However, evidence of primary cilia in tissue from embryonic and very young rat hearts suggests they have a role during development.

8.
J Cardiovasc Pharmacol ; 68(1): 81-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27015081

ABSTRACT

Prostaglandins are ubiquitous signaling molecules in the body that produce autocrine/paracrine effects on target cells in response to mechanical or chemical signals. In the heart, long-term exposure to prostaglandin (PG) F2α has been linked to the development of hypertrophy; however, there is no consensus on the acute effect of PGF2α. Our aim was to determine the response to exogenous PGF2α in isolated trabeculae from rat hearts. PGF2α (1 µM) increased both the Ca transients and the isometric stress in trabeculae, reaching steady state after 10-15 minutes, without altering the time course of Ca transient decay. The precursor of PGF2α, arachidonic acid, also stimulated a similar response. The positive inotropic effect of PGF2α was mediated through a protein kinase C signaling pathway that involved activation of the sarcolemmal Na/H exchanger. We also found that the slow force response to stretch was attenuated in the presence of PGF2α and by addition of indomethacin, a blocker of prostaglandin synthesis. In conclusion, PGF2α was positively inotropic when acutely applied to trabeculae and contributed to the increased Ca transients during the slow force response to stretch. Together, these data suggest that PGF2α is important in maintaining homeostasis during volume loading in healthy hearts.


Subject(s)
Cardiotonic Agents/pharmacology , Dinoprost/pharmacology , Heart Ventricles/drug effects , Myocardial Contraction/drug effects , Ventricular Function, Right/drug effects , Animals , Arachidonic Acid/pharmacology , Calcium Signaling/drug effects , Cyclooxygenase Inhibitors/pharmacology , Guanidines/pharmacology , Heart Ventricles/metabolism , In Vitro Techniques , Indomethacin/pharmacology , Protein Kinase C/metabolism , Rats, Wistar , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Sodium-Hydrogen Exchangers/metabolism , Sulfones/pharmacology , Time Factors
9.
Clin Exp Pharmacol Physiol ; 43(1): 88-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26466753

ABSTRACT

Recently, a family of guanine nucleotide exchange factors have been identified in many cell types as important effectors of cyclic adenosine 3',5'-monophospahte (cAMP) signalling that is independent of protein kinase A (PKA). In the heart, investigation of exchange protein directly activated by cAMP (Epac) has yielded conflicting results. Since cAMP is an important regulator of cardiac contractility, this study aimed to examine whether Epac activation modulates excitation-contraction coupling in ventricular preparations from rat hearts. The study used 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME), an analogue of cAMP that activates Epac, but not PKA. In isolated myocytes, cpTOME increased Ca(2+) spark frequency from about 7 to 32/100 µm(3)/s (n = 10), P = 0.05 with a reduction in the peak amplitude of the sparks. Simultaneous measurements of intracellular Ca(2+) and isometric force in multicellular trabeculae (n = 7, 1.5 mmol/L [Ca(2+)]o) revealed no effect of Epac activation on either the amplitude of Ca(2+) transients (Control 0.7 ± 0.1 vs cpTOME 0.7 ± 0.1; 340/380 fura-2 ratio, P = 0.35) or on peak stress (Control 24 ± 5 mN/mm(2) vs cpTOME 23 ± 5 mN/mm(2), P = 0.20). However, an effect of Epac in trabeculae was unmasked by lowering extracellular [Ca(2+)]o. In these depotentiated trabeculae, activation of the Epac pathway increased myofilament Ca(2+) sensitivity, an effect that was blocked by addition of KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor. This study suggests that Epac activation may be a useful therapeutic target to increase the strength of contraction during low inotropic states.


Subject(s)
Calcium/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Long-Term Synaptic Depression , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Animals , Excitation Contraction Coupling , Heart Ventricles/cytology , Heart Ventricles/metabolism , Myocytes, Cardiac/physiology , Rats
10.
J Anaesthesiol Clin Pharmacol ; 28(1): 70-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22345950

ABSTRACT

BACKGROUND: Hyperbaric oxygen therapy (HBOT) is a treatment option for chronic nonhealing wounds. Transcutaneous oximetry (TCOM) is used for wound assessment. We undertook a randomized prospective controlled trial to evaluate the role of HBOT in healing of chronic nonhealing wounds and to determine whether TCOM predicts healing. MATERIALS AND METHODS: This study was conducted in 30 consenting patients with nonhealing ulcer. The patients were randomized into group HT (receiving HBOT in addition to conventional treatment) and group CT (receiving only conventional treatment). Duration of treatment in both the groups was 30 days. Wound ulcer was analyzed based on size of the wound, exudates, presence of granulation tissue, and wound tissue scoring. Tissue oxygenation (TcPO(2)) was measured on 0, 10(th), 20(th), and 30(th) day. RESULTS: There was 59% reduction in wound area in group HT and 26% increase in wound area in group CT. Ten patients in group HT showed improvement in wound score as compared to five patients in group CT. Complete healing was seen in three patients in group HT as compared to none in group CT. Surgical debridement was required in 6 patients in group HT and 10 patients in group CT. One patient in group HT required amputation as compared to five patients in group CT. A positive correlation was found between TcPO(2) value and various markers of wound healing. CONCLUSION: HBOT has a definitive adjunctive role in the management of chronic nonhealing ulcers. It decreases the amputation rate and improves patient outcome. Periwound TcPO(2) may be used as a predictor of response to HBOT and has a positive correlation with wound healing.

11.
Indian J Anaesth ; 55(2): 187-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21712881

ABSTRACT

We describe for the first time, the perioperative care of a patient with a rare combination of Eisenmenger syndrome with ß-thalassemia major presenting for splenectomy. Patients with Eisenmenger syndrome have polycythemia because of chronic hypoxia but our patient was anaemic and had thrombocytopenia because of thalassemia major. The management of such a case can be challenging for any anaesthesiologist because of severe V/Q mismatch (high shunt fraction and restrictive lung disease because of hypersplenism), decreased oxygen carrying capacity (anaemia) and increased risk of haemorrhage (thrombocytopenia), along with the potential increase in intracardiac shunt during anaesthesia.

12.
Pancreas ; 39(7): 1024-33, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20442677

ABSTRACT

OBJECTIVES: To determine if there is an abrupt change in the frequency of intraislet T regulatory (Treg) cells in female nonobese diabetic (NOD) mice preceding and following spontaneous diabetes and during cyclophosphamide-accelerated disease. METHODS: The frequency of intraislet CD4-positive Treg cells was analyzed between days 21 and 250, at onset, and at 1, 2, and 3 weeks of diabetes by dual-label immunohistochemistry. Tissues were also analyzed between days 0 and 14 after injection of cyclophosphamide or diluent. RESULTS: In the spontaneous group, intraislet Treg cells were first observed on day 30 in CD4 T cells and increased from day 45. There was no statistical difference in the frequency of Treg cells in nondiabetic NOD mice on days 45, 60, and 90. A sustained frequency at and after 1, 2, and 3 weeks of diabetes was also observed. In the cyclophosphamide group, there was a sharp decline in the frequency of Treg cells on day 4, which remained lower on day 7 but increased by days 11 and 14. CONCLUSIONS: During spontaneous diabetes and after onset, the frequency of intraislet CD4-positive Treg cells remains unchanged. They may possess diminished immunoregulatory function and thus unable to counteract the increasing tempo of immune-mediated beta-cell destruction.


Subject(s)
Cyclophosphamide/toxicity , Diabetes Mellitus/immunology , Islets of Langerhans/pathology , T-Lymphocytes, Regulatory/physiology , Animals , Diabetes Mellitus/chemically induced , Female , Immunohistochemistry , Mice , Mice, Inbred NOD
SELECTION OF CITATIONS
SEARCH DETAIL
...