Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(11): e1010442, 2022 11.
Article in English | MEDLINE | ID: mdl-36350833

ABSTRACT

Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study, using S. cerevisiae strain expressing Ssa1 as sole Ssa Hsp70, we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70, that primarily mediates Hsp90 interaction through the bridge protein Sti1, and proximal to Ydj1 (Hsp40 co-chaperone of Hsp70 family) binding region. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175N cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repressing Sti1 expression using doxycycline regulatable promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N), the stress inducible Hsp70 isoform, supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Proteomics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Nucleotides/metabolism , Protein Binding , Adenosine Triphosphatases/metabolism , MAP Kinase Kinase Kinases/metabolism
2.
Theranostics ; 12(10): 4477-4497, 2022.
Article in English | MEDLINE | ID: mdl-35832077

ABSTRACT

Haemorrhagic stroke represents a significant public health burden, yet our knowledge and ability to treat this type of stroke are lacking. Previously we showed that we can target ischaemic-stroke lesions by selective translocation of lipid nanoparticles through the site of blood-brain barrier (BBB) disruption. The data we presented in this study provide compelling evidence that haemorrhagic stroke in mice induces BBB injury that mimics key features of the human pathology and, more importantly, provides a gate for entry of lipid nanoparticles-based therapeutics selectively to the bleeding site. Methods: Haemorrhagic stroke was induced in mice by intra-striatal collagenase injection. lipid nanoparticles were injected intravenously at 3 h, 24 h & 48 h post-haemorrhagic stroke and accumulation in the brain studied using in-vivo optical imaging and histology. BBB integrity, brain water content and iron accumulation were characterised using dynamic contrast-enhanced MRI, quantitative T1 mapping, and gradient echo MRI. Results: Using in-vivo SPECT/CT imaging and optical imaging revealed biphasic lipid nanoparticles entry into the bleeding site, with an early phase of increased uptake at 3-24 h post-haemorrhagic stroke, followed by a second phase at 48-72 h. Lipid nanoparticles entry into the brain post-haemorrhage showed an identical entry pattern to the trans-BBB leakage rate (Ktrans [min-1]) of Gd-DOTA, a biomarker for BBB disruption, measured using dynamic contrast-enhanced MRI. Discussion: Our findings suggest that selective accumulation of liposomes into the lesion site is linked to a biphasic pattern of BBB hyper-permeability. This approach provides a unique opportunity to selectively and efficiently deliver therapeutic molecules across the BBB, an approach that has not been utilised for haemorrhagic stroke therapy and is not achievable using free small drug molecules.


Subject(s)
Hemorrhagic Stroke , Stroke , Animals , Blood-Brain Barrier/pathology , Brain/diagnostic imaging , Brain/pathology , Humans , Liposomes , Magnetic Resonance Imaging/methods , Mice , Nanoparticles , Stroke/diagnostic imaging , Stroke/pathology
3.
J Control Release ; 350: 60-79, 2022 10.
Article in English | MEDLINE | ID: mdl-35405164

ABSTRACT

Modulation of peripheral immune cells in the spleen plays a key role in many life-threatening conditions such as stroke. Immune cell changes can lead to the excessive release of pro-inflammatory cytokines into the circulation and preferential loss of innate immune cells which can further exacerbate tissue damage and predispose patients to infectious complications. Reversing these processes represents an attractive treatment strategy and has shown to have beneficial effects in animal models of ischemic stroke, sepsis, traumatic brain injury (TBI) as well as myocardial infraction (MI). However, systemic interventions are often challenging to deliver due to the non-selective broad range of action of many treatments. More selective targeted treatment approaches are therefore desirable. The spleen is considered a natural filtration site for many nanomaterials due to the spontaneous tendency of this organ to filter blood-borne molecules. This selective targeting of nanomaterials to the spleen therefore offers considerable potential in the management of many conditions affected by peripheral inflammation. In this review, we will explore the key nanomaterials-related parameters that mediate splenic targeting and how these could influence the actual localization and function of nanomaterials once in the spleen. We aim to emphasize the potential of utilising nanomaterials as selective tools for peripheral immunomodulation to accelerate clinical translation.


Subject(s)
Spleen , Stroke , Animals , Cytokines , Immunomodulation , Nanomedicine , Stroke/therapy
4.
Plasmid ; 115: 102557, 2021 05.
Article in English | MEDLINE | ID: mdl-33539828

ABSTRACT

The fission yeast, Schizosaccharomyces pombe, is an excellent model for basic research but is not useful for commercial scale protein expression due to lack of strong expression vectors. Earlier, we showed that the lsd90 promoter elicited significantly greater GFP expression level than the adh1 and nmt1 promoters, albeit in different vector backbones. Here, we have systematically investigated the contribution of selectable markers, LEU2 and URA3m to GFP expression: while LEU2 elicited very low expression, the URA3m gene, with truncated promoter, elicited much greater GFP expression level with all promoters. Paradoxically, an inverse correlation was observed between the GFP transcription and translation efficiency. This system can be useful for understanding the factors governing recombinant gene expression and optimization of protein production.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Genes, Reporter , Genetic Vectors/genetics , Plasmids , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transcription, Genetic
5.
Genetics ; 215(3): 683-698, 2020 07.
Article in English | MEDLINE | ID: mdl-32299842

ABSTRACT

Heat-shock protein (Hsp) 90 assists in the folding of diverse sets of client proteins including kinases and growth hormone receptors. Hsp70 plays a major role in many Hsp90 functions by interacting and modulating conformation of its substrates before being transferred to Hsp90s for final maturation. Each eukaryote contains multiple members of the Hsp70 family. However, the role of different Hsp70 isoforms in Hsp90 chaperoning actions remains unknown. Using v-Src as an Hsp90 substrate, we examined the role of each of the four yeast cytosolic Ssa Hsp70s in regulating Hsp90 functions. We show that the strain expressing stress-inducible Ssa3 or Ssa4, and the not constitutively expressed Ssa1 or Ssa2, as the sole Ssa Hsp70 isoform reduces v-Src-mediated growth defects. The study shows that although different Hsp70 isoforms interact similarly with Hsp90s, v-Src maturation is less efficient in strains expressing Ssa4 as the sole Hsp70. We further show that the functional distinction between Ssa2 and Ssa4 is regulated by its C-terminal domain. Further studies reveal that Ydj1, which is known to assist substrate transfer to Hsp70s, interacts relatively weakly with Ssa4 compared with Ssa2, which could be the basis for poor maturation of the Hsp90 client in cells expressing stress-inducible Ssa4 as the sole Ssa Hsp70. The study thus reveals a novel role of Ydj1 in determining the functional distinction among Hsp70 isoforms with respect to the Hsp90 chaperoning action.


Subject(s)
HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Oncogene Protein pp60(v-src)/metabolism , Protein Domains , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...