Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bot Stud ; 64(1): 7, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988701

ABSTRACT

Trichomes, the hairlike protuberances in plants, have been well known to act as the first line of defense against herbivores, and abiotic stresses, along with other structural defenses such as spines, thorns, and waxes. We previously reported the tremendous variation in trichome traits among different wild and cultivated Solanum species and demonstrated that trichomes types and density are traditionally miscalculated and often misnamed. However, intraspecific variation in trichome traits is poorly understood, although this has implications for stress tolerance and resistance breeding programs in economically important crop species and can also mediate ecological interactions at multiple trophic levels in their wild congeners. In this study, using tomato as a model, we characterized the trichomes from 10 commonly grown varieties using a minimal sample prep desktop scanning electron microscopy, and followed up with estimating their dimensions across the varieties and trichome types. We hypothesized that although trichome number may vary, the varieties will have similar trichome types, based on current literature. Our results show that there is significant variation for trichome number as well as dimensions of trichome types among these varieties. Furthermore, when we separately analyzed the number and dimensions of commonly found glandular and non-glandular trichomes, the results were consistent with broad assessment of trichomes, showing consistent variation among varieties, suggesting that trichome studies should not be limited to basic classification into glandular and non-glandular, and should accommodate the sub-types and their dimensions.

2.
Environ Monit Assess ; 195(3): 366, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36745291

ABSTRACT

Vane trapping is one of the most effective methods for sampling flower-visiting arthropods. Despite its importance in pollinator studies, the effects of trap color on the abundance and richness of pollinators are less understood. To test this, we conducted a 3-season field experiment over 2 years with two types of vane traps: yellow and colorless. We set up twelve traps each in three field sites within the Lower Rio Grande Valley in south Texas, planted with Vigna unguiculata, Crotalaria juncea, Raphanus raphanistrum, and Sorghum drummondii. At each site, six colorless vane and six yellow vane traps were placed equidistant from each other. The experiment was replicated three times across three seasons, first during the pre-flowering season, when the crops were in full bloom, and when there was no crop on the field. In total, we collected 1912 insects, out of which 76.7% were pollinators. Generalized Linear Regression analyses showed that yellow traps consistently attracted significantly more arthropods and pollinators, but these differences were also season dependent. Furthermore, we noticed that Hymenoptera, followed by Coleoptera, were the most prevalent orders in both the yellow vane and colorless vane traps. Interestingly, although there was no significant difference in species richness of the arthropods in the yellow and colorless vane traps, our results suggest that trap color plays a significant role in capturing pollinators, including non-target arthropods. Our data add another line of evidence suggesting that trap color should be accounted for designing experiments that estimate pollinator and arthropod community diversity.


Subject(s)
Arthropods , Coleoptera , Animals , Environmental Monitoring , Seasons , Crops, Agricultural
3.
Langmuir ; 23(26): 13085-92, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18004889

ABSTRACT

Electrospun nanofibrous membranes (ENM) which have a porous structure have a huge potential for various liquid filtration applications. In this paper, we explore the viability of using plasma-induced graft copolymerization to reduce the pore sizes of ENMs. Poly(vinylidene) fluoride (PVDF) was electrospun to produce a nonwoven membrane, comprised of nanofibers with diameters in the range of 200-600 nm. The surface of the ENM was exposed to argon plasma and subsequently graft-copolymerized with methacrylic acid. The effect of plasma exposure time on grafting was studied for both the ENM and a commercial hydrophobic PVDF (HVHP) membrane. The grafting density was quantitatively measured with toluidine blue-O. The degree of grafting increased steeply with an increase in plasma exposure time for the ENM, attaining a maximum of 180 nmol/mg after 120 s of plasma treatment. However, the increase in the grafting density on the surface of the HVHP membrane was not as drastic, reaching a plateau of 65 nmol/mg after 60 s. The liquid entry permeation of water dropped extensively for both membranes, indicating a change in surface properties. Field emission scanning electron microscopy micrographs revealed an alteration in the surface pore structure for both membranes after grafting. Bubble point measurements of the ENM reduced from 3.6 to 0.9 um after grafting. The pore-size distribution obtained using the capillary flow porometer for the grafted ENM revealed that it had a similar profile to that of a commercial hydrophilic commercial PVDF (HVLP) membrane. More significantly, water filtration studies revealed that the grafted ENM had a better flux throughput than the HVLP membrane. This suggests that ENMs can be successfully engineered through surface modification to achieve smaller pores while retaining their high flux performance.


Subject(s)
Membranes, Artificial , Nanostructures , Polymethacrylic Acids/chemistry , Polyvinyls/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...