Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Mol Neurobiol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491338

ABSTRACT

Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aß) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.

3.
J Biochem Mol Toxicol ; 38(3): e23660, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356323

ABSTRACT

The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid ß (Aß) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid ß. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.


Subject(s)
Alzheimer Disease , Pesticides , Humans , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Organophosphates/metabolism , Pesticides/toxicity , Pesticides/metabolism
4.
Metab Brain Dis ; 39(1): 217-237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37505443

ABSTRACT

Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aß and tau is known to be associated with miRNA dysregulation. In addition, the ß-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aß, is also found to be regulated by miRNAs, thus directly affecting Aß accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , Brain/metabolism
5.
Mitochondrion ; 73: 19-29, 2023 11.
Article in English | MEDLINE | ID: mdl-37708950

ABSTRACT

Synaptic mitochondria are crucial for maintaining synaptic activity due to their high energy requirements, substantial calcium (Ca2+) fluctuation, and neurotransmitter release at the synapse. To provide a continuous energy supply, neurons use special mechanisms to transport and distribute healthy mitochondria to the synapse while eliminating the damaged mitochondria from the synapse. Along the neuron, mitochondrial membrane potential (ψ) gradient exists and is highest in the somal region. Lower ψ in the synaptic region renders mitochondria more vulnerable to oxidative stress-mediated damage. Secondly, mitochondria become susceptible to the release of cytochrome c, and mitochondrial DNA (mtDNA) is not shielded from the reactive oxygen species (ROS) by the histone proteins (unlike nuclear DNA), leading to activation of caspases and pronounced oxidative DNA base damage, which ultimately causes synaptic loss. Both synaptic mitochondrial dysfunction and synaptic failure are crucial factors responsible for Alzheimer's disease (AD). Furthermore, amyloid beta (Aß) and hyper-phosphorylated Tau, the two leading players of AD, exaggerate the disease-like pathological conditions by reducing the mitochondrial trafficking, blocking the bi-directional transport at the synapse, enhancing the mitochondrial fission via activating the mitochondrial fission proteins, enhancing the swelling of mitochondria by increasing the influx of water through mitochondrial permeability transition pore (mPTP) opening, as well as reduced ATP production by blocking the activity of complex I and complex IV. Mild cognitive impairment (MCI) is also associated with decline in cognitive ability caused by synaptic degradation. This review summarizes the challenges associated with the synaptic mitochondrial dysfunction linked to AD and MCI and the role of phytochemicals in restoring the synaptic activity and rendering neuroprotection in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Neurons/metabolism , Mitochondria/metabolism , Synapses/metabolism , Cognitive Dysfunction/complications , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Mitochondrial Proteins/metabolism , DNA/metabolism
6.
Methods Mol Biol ; 2413: 69-76, 2022.
Article in English | MEDLINE | ID: mdl-35044656

ABSTRACT

Oxidative stress has been implicated in various human diseases, including cancer, mainly through the generation of reactive nitrogen species (RNS), such as nitric oxide (NO), nitrite, nitroxyl, s-nitrosothiols, and reactive oxygen species (ROS) such as peroxides, superoxide, and hydroxyl radicals. NO being the main player among RNS induced altered cellular molecules and metabolisms, thus making it important to understand and detect the generation of NO in biological samples. There are many methods for direct and indirect detection of NO; out of these most commonly used are spectrophotometric-based Griess assay and fluorescence probe-based assays. In this chapter, we summarize these routinely used methods to detect NO and various challenges associated with these methods.


Subject(s)
Nitric Oxide , Reactive Nitrogen Species , Humans , Nitric Oxide/metabolism , Oxidative Stress , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
7.
Methods Mol Biol ; 2413: 155-163, 2022.
Article in English | MEDLINE | ID: mdl-35044663

ABSTRACT

Reactive oxygen species (ROS) overproduction results in oxidative stress leading to genomic instability via the generation of small base lesions in the genome, and this unrepaired DNA base damage leads to various cellular consequences. The oxidative stress-mediated DNA base damage is involved in various human disorders like cancer, cardiovascular, ocular, and neurodegenerative diseases. Base excision repair (BER) pathway, one of the DNA repair pathways, is majorly involved in the repair of oxidative DNA base lesions, which utilizes a different set of enzymes, including endonuclease viz Apurinic/apyrimidinic endonuclease 1 (APE1). APE1 is a well-known multifunctional enzyme with DNA repair, REDOX regulatory, and protein-protein interaction/cross-talk functions associated with the cell survival mechanisms. APE1 acts as an important player in both normal and cancerous cell survival; thus, evaluating its endonuclease activity in the biological samples provide useful readout of the DNA repair capacity/ability, which can be used to tune for the development of therapeutic candidates via either stimulating or blocking its DNA repair function in normal vs. cancer cells, respectively. This chapter enlists two methods used for the determination of APE1's endonuclease activity by oligonucleotide-based radioactive P32-labeled and nonradioactive fluorescence dyes using the cell extracts and recombinant APE1 protein.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Oligonucleotides , DNA/metabolism , DNA Damage , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Oligonucleotides/genetics , Oligonucleotides/metabolism , Oxidation-Reduction , Oxidative Stress
8.
Mol Neurobiol ; 58(12): 6610-6624, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34595669

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease. It is known to be a multifactorial disease and several causes are associated with its occurrence as well as progression. However, the accumulation of amyloid beta (Aß) is widely considered its major pathogenic hallmark. Additionally, neurofibrillary tangles (NFT), mitochondrial dysfunction, oxidative stress, and aging (cellular senescence) are considered as additional hits affecting the disease pathology. Several studies are now suggesting important role of inflammation in AD, which shifts our thought towards the brain's resident immune cells, microglia, and astrocytes; how they interact with neurons; and how these interactions are affected by intra and extracellular stressful factors. These interactions can be modulated by different mechanisms and pathways, in which exosomes could play an important role. Exosomes are multivesicular bodies secreted by nearly all types of cells. The exosomes secreted by glial cells or neurons affect the interactions and thus the physiology of these cells by transmitting miRNAs, proteins, and lipids. Exosomes can serve as a friend or foe to the neuron function, depending upon the carried signals. Exosomes, from the healthy microenvironment, may assist neuron function and health, whereas, from the stressed microenvironment, they carry oxidative and inflammatory signals to the neurons and thus prove detrimental to the neuronal function. Furthermore, exosomes can cross the blood-brain barrier (BBB), and from the blood plasma they can enter the brain cells and activate microglia and astrocytes. Exosomes can transport Aß or Tau, cytokines, miRNAs between the cells, and alter the physiology of recipient cells. They can also assist in Aß clearance and regulation of synaptic activity. The exosomes derived from different cells play different roles, and this field is still in its infancy stage. This review advocates exosomes' role as a friend or foe in neurodegenerative diseases, especially in the case of Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Exosomes/metabolism , Neurons/metabolism , Animals , Humans , Neurofibrillary Tangles/metabolism , Plaque, Amyloid/metabolism , tau Proteins/metabolism
9.
Metab Brain Dis ; 36(5): 751-765, 2021 06.
Article in English | MEDLINE | ID: mdl-33651273

ABSTRACT

Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioblastoma/metabolism , Pyruvate Kinase/metabolism , Brain/pathology , Brain Neoplasms/pathology , Glioblastoma/pathology , Glycolysis/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...