Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37893698

ABSTRACT

The main aim of the study was to establish the impact of limited proteolysis by actinidin on the functionality of selected milk protein systems. The plant protease actinidin was used to produce hydrolysates (MPHs) from milk protein concentrate (MPC) and whey protein concentrate (WPC) to 0, 5, 10 or 15% of the degree of hydrolysis (DH) at an enzyme-to-substrate ratio of 1:100 (5.21 units of actinidin activity g-1 of protein). The functionalities assessed included solubility, heat stability, emulsification and foaming properties. In general, significant changes in the functionalities of MPH were associated with the extent of hydrolysis. Solubility of hydrolysates increased with increasing %DH, with WPC showing about 97% solubility at 15% DH. Emulsifying properties were negatively affected by hydrolysis, whereas heat stability was improved in the case of WPC (~25% of heat stability increased with an increase in DH to 15%). Hydrolysates from both WPC and MPC had improved foaming properties in comparison to unhydrolysed controls. These results were also supported by changes in the FTIR spectra. Further adjustment of hydrolysis parameters, processing conditions and pH control could be a promising approach to manipulate selected functionalities of MPHs obtained using actinidin.

2.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231667

ABSTRACT

Plant proteases, including actinidin, papain and bromelain, have been widely used in the food industry but with limited application in dairy systems. This research aimed to establish and compare operational parameters (kinetics, temperature, enzyme type, time and thermodynamics) relevant to the applications of these enzymes in the hydrolysis of whey protein isolates (WPI), whey protein concentrates (WPC) or milk protein concentrates (MPC). The degree of hydrolysis (DH) increased with the rise in temperature, and the maximum DH was achieved at 60 °C for all three dairy systems. The addition of papain resulted in a greater %DH of whey proteins in comparison to bromelain. The cleavage of proteins was clearly time-dependent (p < 0.05), while the pH did not change significantly (p > 0.05) during this time. PAGE analysis revealed that all three enzymes mainly acted on α-lactalbumin and αs-casein in WPI and MPC, respectively. Kinetic parameters from the Lineweaver-Burk plot at 60 °C using WPC and MPC as a substrate varied widely, establishing that WPC hydrolysis was characterised by a lower KM, higher kcat, kcat/KM and Vmax compared to MPC in the case of all three enzymes. The difference in kcat/KM values amongst all enzymes (actinidin > papain > bromelain) indicated the difference in the strength of substrate binding sites. The thermodynamic parameters of these enzymes with MPC and WPC were also determined at a temperature range of 15-60 °C, and the results indicate the potential application of papain and actinidin in the dairy industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...