Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 345: 109531, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34058178

ABSTRACT

Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.


Subject(s)
Infertility/chemically induced , Infertility/genetics , Mutagens/toxicity , Neoplasms/chemically induced , Neoplasms/genetics , Animals , Humans , Risk Assessment
2.
Virus Res ; 294: 198275, 2021 03.
Article in English | MEDLINE | ID: mdl-33359190

ABSTRACT

Tmprss2 is an emerging molecular target which guides cellular infections of SARS-CoV-2, has been earmarked for interventions against the viral pathologies. The study aims to computationally screen and identifies potential miRNAs, following in vitro experimental validation of miRNA-mediated suppression of Tmprss2 for early prevention of COVID-19. Pool of 163 miRNAs, scrutinized for Tmprss2 binding with three miRNA prediction algorithms, ensued 11 common miRNAs. Further, computational negative energies for association, corroborated miRNA-Tmprss2 interactions, whereas three miRNAs (hsa-miR-214, hsa-miR-98 and hsa-miR-32) based on probability scores ≥0.8 and accessibility to Tmprss2 target have been selected in the Sfold tool. Transfection of miRNA(s) in the Caco-2 cells, quantitatively estimated differential expression, confirming silencing of Tmprss2 with maximum gene suppression by hsa-miR-32 employing novel promising role in CoV-2 pathogenesis. The exalted binding of miRNAs to Tmprss2 and suppression of later advocates their utility as molecular tools for prevention of SARS-CoV-2 viral transmission and replication in humans.


Subject(s)
MicroRNAs/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Virus Internalization , Caco-2 Cells , Computational Biology , Computer Simulation , Gene Silencing , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Nucleic Acid Conformation
3.
Bone ; 143: 115603, 2021 02.
Article in English | MEDLINE | ID: mdl-32827850

ABSTRACT

The study reports a theranostic nature of rno-miR-300 (miR300) in the osteoblast functioning, by influencing the signaling pathway(s), associated with osteoblast differentiation. Excessive expression of miR300 suppresses osteoblast functions. Smad3 served as a validated target for miR300, on homology-based computational analysis and experimental testimony, which activates ß-catenin, and subsequently potentiates Runx2. The impact of miR300 on the Smad3/ß-catenin/Runx2 signaling interactions in the induction of osteoblast differentiation was scrutinized by immunoblotting and in vivo miRNA antagonism. Overexpression of miR300 in the rat calvarial osteoblasts decreases the protein levels of Smad3, ß-catenin and Runx2. Besides, in vivo silencing of miR300 in the neonatal pups and adult rats by AntimiR300 abolishes the suppressing action of miR300 on the osteoblast differentiation and expressions of Smad3/ß-catenin/Runx2 axis. MicroCT studies showed improved trabecular microarchitecture in the AntimiR300 transfected ovariectomised rat model compared to sham and negative control. Furthermore, expression levels of miR300 were evaluated in serum samples from an independent set of 30 osteoporotic patients followed by a Receiver Operating Characteristic Curve (ROC) based analysis for the diagnostic efficiency of miR300. Interestingly, the results exhibited high levels of miR300 (p < 0.0001) in the serum samples from osteoporotic patients relative to non-osteoporotic subjects (AUC = 0.9689). Thus, miR300 negatively regulates the differentiation of osteoblasts by targeting crosstalk among Smad3, ß-catenin and Runx2, unveiling an enormous ability to serve as a therapeutic target for bone-related disorder management strategies. Besides, miR300 may potentially function for the diagnosis of osteoporosis as a non-invasive biomarker.


Subject(s)
MicroRNAs , Osteoporosis , Animals , Biomarkers , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , MicroRNAs/genetics , Osteoblasts/metabolism , Osteogenesis , Osteoporosis/genetics , Rats , Smad3 Protein/genetics , beta Catenin/genetics , beta Catenin/metabolism
4.
J Agric Food Chem ; 68(31): 8308-8320, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32628843

ABSTRACT

Biologically active peptides in milk proteins can be used as effective dietary supplements for management of bone-associated issues including osteoporosis. A bioactive peptide derived from milk, viz. VLPVPQK/PepC, has been validated previously from our lab for its osteoanabolic action. In this study, we report 14 novel variants of PepC, designed in silico, based on the structure-activity relationship, aiming to enhance its osteogenic effect that holds tremendous therapeutic utility for bone-related injuries. PepC was computationally modified at seven positions of its original sequence, resulting in 14 modified synthetic peptides for functional predictions and in vitro assessment by comparative analysis of modified peptides by PepC for improved ability in osteogenic functional assays (proliferation potential, antioxidant ability, gene and protein expression, cytotoxic effect, bone mineralization) using calvarial osteoblasts. For most peptides with the highest Peptide7 response relative to PepC (p < 0.05), enhanced osteoanabolic response was observed. Further observations on Peptide7 have therefore been investigated in depth (qPCR, immunoblotting, LCMS/MS, and PCA analysis). Peptide7 displayed a rise in the expression of osteogenes (Osterix, Opg, Bmp2, and Runx2, p < 0.05) and protein (Runx2 and Bmp2, p < 0.05). Besides, LCMS/MS findings suggest Peptide7 escapes intestinal peptidases degradation. Experimental evidence supports an improved osteological reaction to newly modified peptides and hence exploitation in the preparation of functional foods or supplements.


Subject(s)
Osteoblasts/drug effects , Osteogenesis/drug effects , Peptides/chemistry , Peptides/pharmacology , Amino Acid Sequence , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cattle , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Milk/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...