Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 275(9): 6642-50, 2000 Mar 03.
Article in English | MEDLINE | ID: mdl-10692473

ABSTRACT

Micron-sized sensors were used to monitor glucose and oxygen levels in the extracellular space of single islets of Langerhans in real-time. At 10 mM glucose, oscillations in intraislet glucose concentration were readily detected. Changes in glucose level correspond to changes in glucose consumption by glycolysis balanced by mass transport into the islet. Oscillations had a period of 3.1 +/- 0.2 min and amplitude of 0.8 +/- 0.1 mM glucose (n = 21). Superimposed on these oscillations were faster fluctuations in glucose level during the periods of low glucose consumption. Oxygen level oscillations that were out of phase with the glucose oscillations were also detected. Oscillations in both oxygen and glucose consumption were strongly dependent upon extracellular Ca(2+) and sensitive to nifedipine. Simultaneous measurements of glucose with intracellular Ca(2+) ([Ca(2+)](i)) revealed that decreases in [Ca(2+)](i) preceded increases in glucose consumption by 7.4 +/- 2.1 s during an oscillation (n = 9). Conversely, increases in [Ca(2+)](i) preceded increases in oxygen consumption by 1.5 +/- 0.2 s (n = 4). These results suggest that during oscillations, bursts of glycolysis begin after Ca(2+) has stopped entering the cell. Glycolysis stimulates further Ca(2+) entry, which in turn stimulates increases in respiration. The data during oscillation are in contrast to the time course of events during initial exposure to glucose. Under these conditions, a burst of oxygen consumption precedes the initial rise in [Ca(2+)](i). A model to explain these results is described.


Subject(s)
Calcium/metabolism , Glucose/metabolism , Islets of Langerhans/metabolism , Oxygen Consumption , Animals , Biosensing Techniques , Cell Respiration , Glycolysis , Mice , Microelectrodes , Models, Biological , Nifedipine/pharmacology
2.
Anal Chem ; 71(17): 3642-9, 1999 Sep 01.
Article in English | MEDLINE | ID: mdl-10489519

ABSTRACT

An oxygen microsensor with a < 3-micron tip diameter was developed for monitoring oxygen levels at single cells and mouse pancreatic islets. The sensor was fabricated by electrochemically recessing an etched Pt wire inside a pulled glass micropipet and then coating with cellulose acetate. This fabrication process was found to be simpler than previous oxygen electrode designs of comparable size. The microsensors had a average sensitivity of 0.59 +/- 0.29 pA/mmHg (mean +/- SD, n = 42), signals that were minimally perturbed by convection, and response times of < 1 s. The electrode was used to measure the oxygen gradient around and inside single mouse islets. The measurements demonstrate that oxygen levels within even the largest islets at maximal glucose stimulation are 67 +/- 1.6 mmHg (mean +/- SD, n = 5), indicating that islets have adequate oxygen supplies by diffusion under tissue culture conditions to support insulin secretion. The electrode was also used to record the dynamics of oxygen level at single islets as a function of glucose concentration. As glucose level was changed from 3 to 10 mM, oxygen level decreased by 15.8 +/- 2.3 mmHg (mean +/- SEM, n = 6) and oscillations with a period of 3.3 +/- 0.6 min (mean +/- SEM, n = 6) appeared in the oxygen level. In islets bathed in quiescent solutions containing 10 mM glucose, similar oscillations could be observed. In addition, in the quiet solutions it was possible to detect faster oscillations with a period of 12.1 +/- 1.7 s (mean +/- SEM, n = 6) superimposed on the slower oscillations. Oxygen consumption could also be observed at single insulinoma cells using the electrode. Individual cells also showed oscillations in oxygen consumption with a period of a few seconds. The results demonstrate that the electrode can be used for dynamic oxygen level recordings in biological microenvironments.


Subject(s)
Biosensing Techniques , Islets of Langerhans/chemistry , Oxygen/analysis , Animals , Mice , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...