Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 2(12): 100457, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028604

ABSTRACT

Second generation (2G) chimeric antigen receptors (CARs) contain a CD28 or 41BB co-stimulatory endodomain and elicit remarkable efficacy in hematological malignancies. Third generation (3G) CARs extend this linear blueprint by fusing both co-stimulatory units in series. However, clinical impact has been muted despite compelling evidence that co-signaling by CD28 and 41BB can powerfully amplify natural immune responses. We postulate that effective dual co-stimulation requires juxta-membrane positioning of endodomain components within separate synthetic receptors. Consequently, we designed parallel (p)CARs in which a 2G (CD28+CD3ζ) CAR is co-expressed with a 41BB-containing chimeric co-stimulatory receptor. We demonstrate that the pCAR platform optimally harnesses synergistic and tumor-dependent co-stimulation to resist T cell exhaustion and senescence, sustaining proliferation, cytokine release, cytokine signaling, and metabolic fitness upon repeated stimulation. When engineered using targeting moieties of diverse composition, affinity, and specificity, pCAR T cells consistently elicit superior anti-tumor activity compared with T cells that express traditional linear CARs.


Subject(s)
CD28 Antigens/metabolism , Cell Membrane/metabolism , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Humans , Integrins/metabolism , Lymphoma/immunology , Mice, Inbred NOD , Mice, SCID , Mucin-1/metabolism , Protein Multimerization , Receptors, Colony-Stimulating Factor/metabolism , Xenograft Model Antitumor Assays
2.
Mucosal Immunol ; 12(5): 1244-1255, 2019 09.
Article in English | MEDLINE | ID: mdl-31358860

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, especially in infants. Lung neutrophilia is a hallmark of RSV disease but the mechanism by which neutrophils are recruited and activated is unclear. Here, we investigate the innate immune signaling pathways underlying neutrophil recruitment and activation in RSV-infected mice. We show that MyD88/TRIF signaling is essential for lung neutrophil recruitment while MAVS signaling, leading to type I IFN production, is necessary for neutrophil activation. Consistent with that notion, administration of type I IFNs to the lungs of RSV-infected Mavs-/- mice partially activates lung neutrophils recruited via the MyD88/TRIF pathway. Conversely, lack of neutrophil recruitment to the lungs of RSV-infected Myd88/Trif-/- mice can be corrected by administration of chemoattractants and those neutrophils become fully activated. Interestingly, Myd88/Trif-/- mice did not have increased lung viral loads during RSV infection, suggesting that neutrophils are dispensable for viral control. Thus, two distinct pathogen sensing pathways collaborate for neutrophil recruitment and full activation during RSV infection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Myeloid Differentiation Factor 88/metabolism , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Humans , Immunophenotyping , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Neutrophils/pathology , Respiratory Syncytial Viruses/immunology , Signal Transduction
3.
Sci Rep ; 8(1): 9466, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29930254

ABSTRACT

Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated.


Subject(s)
Chemotaxis , Monocytes/metabolism , Platelet Factor 4/metabolism , Receptors, CCR1/metabolism , Calcium/metabolism , Cell Line , Cells, Cultured , Chondroitin ABC Lyase/pharmacology , Endocytosis , Humans , Monocytes/drug effects , Monocytes/physiology , Pertussis Toxin/pharmacology , Platelet Factor 4/genetics , Protein Binding
4.
J Exp Med ; 212(5): 699-714, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25897172

ABSTRACT

Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)-coupled retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN-dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN-mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation.


Subject(s)
Immunity, Innate , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Interferon Type I/genetics , Interferon Type I/immunology , Macrophages, Alveolar/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Knockout , Monocytes/immunology , Monocytes/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/immunology , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Receptors, Cell Surface , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/pathology
5.
Eur J Immunol ; 44(8): 2340-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24777856

ABSTRACT

During respiratory syncytial virus (RSV) infection CD8(+) T cells both assist in viral clearance and contribute to immunopathology. CD8(+) T cells recognize viral peptides presented by dendritic cells (DCs), which can directly present viral antigens when infected or, alternatively, "cross-present" antigens after endocytosis of dead or dying infected cells. Mouse CD8α(+) and CD103(+) DCs excel at cross-presentation, in part because they express the receptor DNGR-1 that detects dead cells by binding to exposed F-actin and routes internalized cell debris into the cross-presentation pathway. As RSV causes death in infected epithelial cells, we tested whether cross-presentation via DNGR-1 is necessary for CD8(+) T-cell responses to the virus. DNGR-1-deficient or wild-type mice were intranasally inoculated with RSV and the magnitude of RSV-specific CD8(+) T-cell induction was measured. We found that during live RSV infection, cross-presentation via DNGR-1 did not have a major role in the generation of RSV-specific CD8(+) T-cell responses. However, after intranasal immunization with dead cells infected with RSV, a dependence on DNGR-1 for RSV-specific CD8(+) T-cell responses was observed, confirming the ascribed role of the receptor. Thus, direct presentation by DCs may be the major pathway initiating CD8(+) T-cell responses to RSV, while DNGR-1-dependent cross-presentation has no detectable role.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lectins, C-Type/immunology , Receptors, Immunologic/immunology , Respiratory Syncytial Virus Infections/immunology , Actins/immunology , Animals , Antigen Presentation/immunology , Antigens, Viral/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Epithelial Cells/immunology , Epithelial Cells/virology , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Viruses/immunology , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...