Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Biol Chem ; 300(3): 105696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301888

ABSTRACT

Interferon-gamma-inducible large GTPases, hGBPs, possess antipathogenic and antitumor activities in human cells. Like hGBP1, its closest homolog, hGBP3 has two domains; an N-terminal catalytic domain and a C-terminal helical domain, connected by an intermediate region. The biochemical function of this protein and the role of its domains in substrate hydrolysis have not yet been investigated. Here, we report that while hGBP3 can produce both GDP and GMP, GMP is the minor product, 30% (unlike 85% in hGBP1), indicating that hGBP3 is unable to produce enhanced GMP. To understand which domain(s) are responsible for this deficiency, we created hGBP3 truncated variants. Surprisingly, GMP production was similar upon deletion of the helical domain, suggesting that in contrast to hGBP1, the helical domain of hGBP3 cannot stimulate the second phosphate cleavage of GTP. We conducted computational and solution studies to understand the underlying basis. We found that the regulatory residue W79, present in the catalytic domain, forms an H-bond with the backbone carbonyl of K76 (located in the catalytic loop) of the substrate-bound hGBP3. However, after gamma-phosphate cleavage of GTP, the W79-containing region does not undergo a conformational change, failing to redirect the catalytic loop toward the beta-phosphate. This is necessary for efficient GMP formation because hGBP homologs utilize the same catalytic residue for both phosphate cleavages. We suggest that the lack of specific interdomain contacts mediated by the helical domain prevents the catalytic loop movement, resulting in reduced GMP formation. These findings may provide insight into how hGBP3 contributes to immunity.


Subject(s)
Catalytic Domain , GTP-Binding Proteins , Guanosine Triphosphate , Phosphates , Humans , Catalytic Domain/genetics , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Phosphates/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
2.
J Biomol Struct Dyn ; 42(5): 2698-2713, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37154523

ABSTRACT

Lipid peroxidation (LPO) is a biological process that frequently occurs under physiological conditions. Undue oxidative stress increases the level of LPO; which may further contribute to the development of cancer. 4-Hydroxy-2-nonenal (HNE), one of the principal by-products of LPO, is present in high concentrations in oxidatively stressed cells. HNE rapidly reacts with various biological components, including DNA and proteins; however, the extent of protein degradation by lipid electrophiles is not well understood. The influence of HNE on protein structures will likely have a considerable therapeutic value. This research elucidates the potential of HNE, one of the most researched phospholipid peroxidation products, in modifying low-density lipoprotein (LDL). In this study, we tracked the structural alterations in LDL by HNE using various physicochemical techniques. To comprehend the stability, binding mechanism and conformational dynamics of the HNE-LDL complex, computational investigations were carried out. LDL was altered in vitro by HNE, and the secondary and tertiary structural alterations were examined using spectroscopic methods, such as UV-visible, fluorescence, circular dichroism and fourier transform infrared spectroscopy. Carbonyl content, thiobarbituric acid-reactive-substance (TBARS) and nitroblue tetrazolium (NBT) reduction assays were used to examine changes in the oxidation status of LDL. Thioflavin T (ThT), 1-anilinonaphthalene-8-sulfonic (ANS) binding assay and electron microscopy were used to investigate aggregates formation. According to our research, LDL modified by HNE results in changes in structural dynamics, oxidative stress and the formation of LDL aggregates. The current investigation must characterize HNE's interactions with LDL and comprehend how it can change their physiological or pathological functions.Communicated by Ramaswamy H. Sarma.


Subject(s)
Aldehydes , Lipoproteins, LDL , Humans , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Aldehydes/metabolism , Aldehydes/pharmacology , Oxidation-Reduction , Lipid Peroxidation
3.
J Phys Chem B ; 127(41): 8749-8761, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37796726

ABSTRACT

Macromolecular crowding has been known to influence the structure and function of many enzymes through excluded volume effects and/or soft interactions. Here, we employed two synthetic macromolecular crowders, Dextrans and poly(ethylene glycol)s (PEGs) with varying molecular masses, to examine how they affected the structure and function of a therapeutically important enzyme, human arginase-I that catalyzes the conversion of l-arginine to l-ornithine and urea. Except at greater concentrations of Dextran 200, Dextrans were observed to slightly reduce the enzymatic activity, indicating that they exert their influence mainly through the excluded volume effects. Similar outcomes were seen with PEGs, with the exception of PEG 1000, where the activity decreased with increasing PEG concentrations, showing the maximum effect at a 20 g/L concentration. This finding suggests that the enzyme function is reduced by the soft interactions of this macromolecule with the enzyme, supported by the binding measurement. Secondary and local tertiary structures and thermodynamic stability were also affected, suggesting that PEG 1000 has an impact on the protein's structure. Furthermore, molecular dynamics simulation studies suggest that the catalytic pocket is disturbed, presumably by the unwinding of neighboring helix 9. As a result, the positioning of nearby Glu277 is altered, which prevents His141 and Glu277 from making contact. This hampers the proton transfer from the catalytic His141 to the intermediate species to form ornithine, a crucial step for the substrate hydrolysis reaction by this arginase. Overall, the knowledge gained from this study might be helpful for understanding how different enzymes work in a crowded/cellular environment.


Subject(s)
Arginase , Dextrans , Humans , Arginase/chemistry , Arginase/metabolism , Dextrans/chemistry , Polyethylene Glycols/chemistry , Ornithine/metabolism , Macromolecular Substances/chemistry
4.
Biochemistry ; 62(9): 1509-1526, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37042791

ABSTRACT

Interferon-gamma-inducible human large GTPases, hGBP1 and hGBP2, have a distinctive feature of hydrolyzing GTP to GDP and GMP through successive phosphate cleavages. In hGBP1, GMP is the major product, which is essential for its anti-pathogenic activities. However, its close homologue hGBP2 produces significantly less GMP, despite having a similar active site architecture. The molecular basis for less GMP formation and catalytic residue(s) in hGBP2 are not fully explored. To address these issues, we performed systematic biochemical, biophysical, and microsecond simulation studies. Our data suggest that the less GMP formation in hGBP2 is due to the lack of H-bond formation between the W79 side-chain (located near the active site) and main-chain carbonyl of K76 (present in the catalytic loop) in the substrate-bound hGBP2. The absence of this H-bond could not redirect the catalytic loop toward the beta phosphate after the cleavage of gamma-phosphate, a step essential for enhanced GMP formation. Furthermore, based on the mutational and structural analyses, this study for the first time indicates that the same residue, T75, mediates both phosphate cleavages in hGBP2 and hGBP1. This suggests the conservation of the catalytic residue in hGBP homologues. These findings emphasize the indispensable role of correct catalytic loop repositioning for efficient beta phosphate cleavage. This led us to propose a new substrate hydrolysis mechanism by hGBP1 and hGBP2, which may also be helpful to understand the GTP hydrolysis in other hGBP homologues. Overall, the study could provide insight into how these two close homologues play crucial roles in host-mediated immunity through different mechanisms.


Subject(s)
GTP Phosphohydrolases , GTP-Binding Proteins , Humans , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/chemistry , GTP Phosphohydrolases/metabolism , Hydrolysis , Phosphates
5.
Pharm Res ; 40(1): 167-185, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36376607

ABSTRACT

OBJECTIVE: Neuroprotection is a precise target for the treatment of neurodegenerative diseases, ischemic stroke, and traumatic brain injury. Pyrimidine and its derivatives have been proven to use antiviral, anticancer, antioxidant, and antimicrobial activity prompting us to study the neuroprotection and anti-inflammatory activity of the triazole-pyrimidine hybrid on human microglia and neuronal cell model. METHODS: A series of novel triazole-pyrimidine-based compounds were designed, synthesized and characterized by mass spectra, 1HNMR, 13CNMR, and a single X-Ray diffraction analysis. Further, the neuroprotective, anti-neuroinflammatory activity was evaluated by cell viability assay (MTT), Elisa, qRT-PCR, western blotting, and molecular docking. RESULTS: The molecular results revealed that triazole-pyrimidine hybrid compounds have promising neuroprotective and anti-inflammatory properties. Among the 14 synthesized compounds, ZA3-ZA5, ZB2-ZB6, and intermediate S5 showed significant anti-neuroinflammatory properties through inhibition of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated human microglia cells. From 14 compounds, six (ZA2 to ZA6 and intermediate S5) exhibited promising neuroprotective activity by reduced expression of the endoplasmic reticulum (ER) chaperone, BIP, and apoptosis marker cleaved caspase-3 in human neuronal cells. Also, a molecular docking study showed that lead compounds have favorable interaction with active residues of ATF4 and NF-kB proteins. CONCLUSION: The possible mechanism of action was observed through the inhibition of ER stress, apoptosis, and the NF-kB inflammatory pathway. Thus, our study strongly indicates that the novel scaffolds of triazole-pyrimidine-based compounds can potentially be developed as neuroprotective and anti-neuroinflammatory agents.


Subject(s)
Neuroprotection , Neuroprotective Agents , Humans , NF-kappa B/metabolism , Triazoles/pharmacology , Triazoles/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Microglia/pathology , Pyrimidines/pharmacology , Pyrimidines/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Lipopolysaccharides/pharmacology
6.
J Biochem Mol Toxicol ; 37(2): e23241, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36205257

ABSTRACT

Glioma is a major brain tumor, and the associated mortality rate is very high. Contemporary therapies provide a chance of survival for 9-12 months. Therefore, a novel approach is essential to improve the survival rate. Sonic hedgehog (Shh) cell signaling is critical for early development in various tumors. This investigation attempted to explore the potential interaction and regulation of Shh-Gli1 cell signaling in association with paired box 6 (Pax6) and isocitrate dehydrogenase 2 (IDH2). The expression pattern of Shh, Gli1, Pax6, and IDH2 was examined by transcriptome analysis, immunohistochemistry, and confocal images. The results suggest the interaction of Shh-Gli1 cell signaling pathway with Pax6 and IDH2 and potential regulation. Thereafter, we performed protein-protein docking and molecular dynamic simulations (MDS) of Gli1 with Pax6 and IDH2. The results suggest differential dynamic interactions of Gli1-IDH2 and Gli1-Pax6. Gli1 knockdown downregulated the expression of Pax6 and upregulated the expression of IDH2. Moreover, Gli1 knockdown decreased the expression of the drug resistance gene MRP1. The knockdown of Pax6 gene in glioma cells downregulated the expression of Gli1 and IDH2 and promoted cell proliferation. Moreover, the efficacy of the treatment of glioma cells with temozolomide (TMZ) and Gli1 inhibitor GANT61 was higher than that of TMZ alone. MDS results revealed that the interactions of Gli1 with IDH2 were stronger and more stable than those with Pax6. Intriguingly, inhibition of Pax6 promoted glioma growth even in the presence of TMZ. However, the tumor-suppressive nature of Pax6 was altered when Gli1 was inhibited by GANT61, and it showed potential oncogenic character, as observed in other cancers. Therefore, we conclude that Pax6 interacted with IDH2 and Gli1 in glioma. Moreover, the Shh-Gli1-IDH2/Pax6 cell signaling axis provides a new therapeutic approach for inhibiting the progression of the disease and mitigating drug resistance in glioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/therapeutic use , Drug Resistance, Neoplasm , Hedgehog Proteins/metabolism , Glioma/drug therapy , Glioma/metabolism , Brain Neoplasms/metabolism , Temozolomide/pharmacology , PAX6 Transcription Factor/genetics
7.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36014345

ABSTRACT

An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them-viz., Z-guggulsterone, dehydrocostus lactone and crocin-showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.


Subject(s)
Carcinoma, Hepatocellular , Crocus , Liver Neoplasms , Pregnenediones , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Pregnenediones/pharmacology
8.
Clin Cancer Res ; 28(13): 2854-2864, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35522533

ABSTRACT

PURPOSE: We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.


Subject(s)
Multiple Myeloma , DNA Copy Number Variations , Genomics , High-Throughput Nucleotide Sequencing , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Mutation , Translocation, Genetic , Whole Genome Sequencing
9.
J Biomol Struct Dyn ; 40(3): 1216-1229, 2022 02.
Article in English | MEDLINE | ID: mdl-32954978

ABSTRACT

Memantine belongs to the class of cognition enhancers that functions as NMDA receptor antagonist, used to treat Alzheimer's disease. The interaction of memantine with DNA was not investigated. In the present study, the interaction of memantine with ct-DNA, as well as its cytotoxicity on cancer cells, was evaluated. UV-visible spectroscopy, steady-state fluorescence spectroscopic studies revealed the interaction between memantine and ct-DNA. The quenching studies, chemical denaturation, (CD), and DNA melting studies showed the groove binding mode of memantine with ct-DNA. The thermodynamic parameters revealed that the interaction between memantine and ct-DNA is enthalpically driven, and the stabilizing forces involved were hydrogen bonding and van der Waals interaction. The groove-binding was also observed by molecular docking studies, which corroborated the findings of spectroscopic investigations. Density function theory calculations confirmed the existence of electron donor and recipient groups. The stability of memantine and DNA interaction, as well as the critical residues involved in the interaction, was identified by molecular dynamics simulations. Memantine showed cytotoxicity towards the cancer cells as compared to normal cells, as observed by MTT assay. Inverted compound microscopy analysis of memantine treated cancer cell lines further confirmed the results obtained by MTT assay.Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA , Memantine , Cell Line , DNA/chemistry , Memantine/pharmacology , Molecular Docking Simulation , Nucleic Acid Conformation , Spectrometry, Fluorescence , Thermodynamics
10.
J Biomol Struct Dyn ; 40(16): 7598-7611, 2022 10.
Article in English | MEDLINE | ID: mdl-33719845

ABSTRACT

Methyl methanesulfonate (MMS) is a highly toxic DNA-alkylating agent that has a potential to damage the structural integrity of DNA. This work employed multiple biophysical and computational methods to report the MMS mediated structural alterations in the DNA (MMS-DNA). Spectroscopic techniques and gel electrophoresis studies revealed MMS induced exposure of chromophoric groups of DNA; methylation mediated anti→syn conformational change, DNA fragmentation and reduced nucleic acid stability. MMS induced single-stranded regions in the DNA were observed in nuclease S1 assay. FT-IR results indicated MMS mediated loss of the assigned peaks for DNA, partial loss of C-O ribose, loss of deoxyribose region, C-O stretching and bending of the C-OH groups of hexose sugar, a progressive shift in the assigned guanine and adenine peaks, loss of thymine peak, base stacking and presence of C-O-H vibrations of glucose and fructose, indicating direct strand breaks in DNA due to backbone loss. Isothermal titration calorimetry showed MMS-DNA interaction as exothermic with moderate affinity. Dynamic light scattering studies pointed towards methylation followed by the generation of single-stranded regions. Electron microscopy pictured the loss of alignment in parallel base pairs and showed the formation of fibrous aggregates in MMS-DNA. Molecular docking found MMS in close contact with the ribose sugar of DNA backbone having non-bonded interactions. Molecular dynamic simulations confirmed that MMS is capable of interacting with DNA at two levels, one at the level of nitrogenous bases and another at the DNA backbone. The study offers insights into the molecular interaction of MMS and DNA.Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA , Ribose , DNA Damage , DNA Repair , Methyl Methanesulfonate/toxicity , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared
11.
Biochem J ; 478(4): 871-894, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33480396

ABSTRACT

The binuclear metalloenzyme Helicobacter pylori arginase is important for pathogenesis of the bacterium in the human stomach. Despite conservation of the catalytic residues, this single Trp enzyme has an insertion sequence (-153ESEEKAWQKLCSL165-) that is extremely crucial to function. This sequence contains the critical residues, which are conserved in the homolog of other Helicobacter gastric pathogens. However, the underlying basis for the role of this motif in catalytic function is not completely understood. Here, we used biochemical, biophysical and molecular dynamics simulations studies to determine that Glu155 of this stretch interacts with both Lys57 and Ser152. These interactions are essential for positioning of the motif through Trp159, which is located near Glu155 (His122-Trp159-Tyr125 contact is essential to tertiary structural integrity). The individual or double mutation of Lys57 and Ser152 to Ala considerably reduces catalytic activity with Lys57 to Ala being more significant, indicating they are crucial to function. Our data suggest that the Lys57-Glu155-Ser152 interaction influences the positioning of the loop containing the catalytic His133 so that this His can participate in catalysis, thereby providing a mechanistic understanding into the role of this motif in catalytic function. Lys57 was also found only in the arginases of other Helicobacter gastric pathogens. Based on the non-conserved motif, we found a new molecule, which specifically inhibits this enzyme. Thus, the present study not only provides a molecular basis into the role of this motif in function, but also offers an opportunity for the design of inhibitors with greater efficacy.


Subject(s)
Arginase/chemistry , Bacterial Proteins/chemistry , Helicobacter pylori/enzymology , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/chemistry , Animals , Arginase/antagonists & inhibitors , Arginase/genetics , Arginine/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Catalysis , Cobalt/metabolism , Conserved Sequence , Fluorescence Polarization , Gastritis/microbiology , Gastritis/veterinary , Helicobacter/enzymology , Helicobacter Infections/microbiology , Helicobacter Infections/veterinary , Helicobacter pylori/genetics , Humans , Hydrolysis , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation, Missense , Point Mutation , Protein Structure, Secondary , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119296, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33338935

ABSTRACT

Insight into the mechanistic binding of bovine serum albumin (BSA) with doxofylline can layout pivotal enlightenment with relevance to pharmacokinetics and pharmacodynamics properties. Herein, many spectroscopic techniques and computational methods had been employed to interpret the structural and binding dynamics of BSA-doxofylline interaction. Doxofylline quenched the intrinsic fluorescence of BSA by static quenching. The stoichiometry and the binding constant of the BSA-doxofylline complex were 1:1 and in the order of 103 M-1. It was also concluded that the binding process was spontaneous and exothermic, primarily based on the thermodynamic study. Circular dichroism and three-dimensional excitation-emission matrix fluorescence results concluded pronounced conformational and microenvironmental changes in BSA structure on binding with doxofylline. The influence of metal ions and vitamins on the binding affinity of the BSA-doxofylline system were also explored. The in vitro findings were further supported by in silico analysis. With a score value of -6.25 kcal/mol, molecular docking showed strong interactions. Molecular dynamics simulation interpretation also suggested the stable binding with lower deviation in the values of RMSD and RMSF obtained by uninterrupted long simulation run. These studies will propose the optimum potency of distribution of the doxofylline into the bloodstream for asthma treatment.


Subject(s)
Serum Albumin, Bovine , Binding Sites , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Theophylline/analogs & derivatives , Thermodynamics
13.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 691-704, 2020 04.
Article in English | MEDLINE | ID: mdl-31822939

ABSTRACT

Oxidative stress and inflammation are considered as therapeutic targets in myocardial injury. The aim of the present study was to investigate the protective effect of syringic acid (SA) and syringaldehyde (SYD) on peripheral blood mononuclear cells (PBMCs) of myocardial infarction (MI) patients. PBMCs from MI patients were cultured in the presence and absence of SA and SYD. The level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) was estimated. Reactive oxygen species (ROS) formation, oxidation of lipids, proteins, and activity of antioxidant enzymes were also quantified. To further determine biomolecular changes in treated PBMCs, Fourier transform infrared (FTIR) spectroscopic analysis was done. Molecular docking study was also conducted to evaluate the binding interaction of SA and SYD with various target proteins. SA and SYD treated PBMCs of MI patients showed decreased secretion of TNF-α, IL-6, and NO. Moreover, the content of ROS, level of lipid, and protein oxidation showed diminution by treatment with both the compounds. Enhanced antioxidant defense was also observed in treated PBMCs. The FTIR spectra of treated cells revealed safeguarding effect of SA and SYD on biomolecular structure. The molecular docking analysis displayed significant binding affinity of the two compounds towards TNF-α, IL-6, and antioxidant enzymes. Our findings demonstrated potent antioxidant and anti-inflammatory effects of SA and SYD on PBMCs of MI patients. Thus, SA and SYD supplementation might be beneficial in attenuating oxidative stress and inflammation in MI.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Benzaldehydes/pharmacology , Gallic Acid/analogs & derivatives , Leukocytes, Mononuclear/drug effects , Myocardial Infarction/metabolism , Adult , Cells, Cultured , Female , Gallic Acid/pharmacology , Glutathione/metabolism , Humans , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Male , Malondialdehyde/metabolism , Middle Aged , Molecular Docking Simulation , Myocardial Infarction/immunology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
14.
IUBMB Life ; 71(10): 1522-1536, 2019 10.
Article in English | MEDLINE | ID: mdl-31185142

ABSTRACT

Acetaldehyde is a metabolite of ethanol, an important constituent of tobacco pyrolysis and the aldehydic product of lipid peroxidation. Acetaldehyde induced toxicity is mainly due to its binding to cellular macromolecules resulting in the formation of stable adducts accompanied by oxidative stress. The aim of this study was to characterize structural and immunological alterations in human immunoglobulin G (IgG) modified with acetaldehyde in the presence of sodium borohydride, a reducing agent. The IgG modifications were studied by various physicochemical techniques such as fluorescence and CD spectroscopy, free amino group estimation, 2,2-azobis 2-amidinopropane (AAPH) induced red blood cell hemolysis as well as transmission electron microscopy. Molecular docking was also employed to predict the preferential binding of acetaldehyde to IgG. The immunogenicity of native and acetaldehyde-modified IgG was investigated by immunizing female New Zealand white rabbits using native and modified IgG as antigens. Binding specificity and cross reactivity of rabbit antibodies was screened by competitive inhibition ELISA and band shift assays. The modification of human IgG with acetaldehyde results in quenching of the fluorescence of tyrosine residues, decrease in free amino group content, a change in the antioxidant property as well as formation of cross-linked structures in human IgG. Molecular docking reveals strong binding of IgG to acetaldehyde. Moreover, acetaldehyde modified IgG induced high titer antibodies (>1:12800) in the experimental animals. The antibodies exhibited high specificity in competitive binding assay toward acetaldehyde modified human IgG. The results indicate that acetaldehyde induces alterations in secondary and tertiary structure of IgG molecule that leads to formation of neo-epitopes on IgG that enhances its immunogenicity.


Subject(s)
Acetaldehyde/chemistry , Epitopes/ultrastructure , Immunoglobulin G/ultrastructure , Protein Conformation , Animals , Binding Sites/immunology , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Erythrocytes/immunology , Female , Hemolysis/immunology , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Microscopy, Electron, Transmission , Molecular Docking Simulation , Oxidative Stress/immunology , Protein Binding/immunology , Rabbits , Tyrosine/immunology
15.
J Mol Model ; 24(9): 262, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30159679

ABSTRACT

Bone morphogenetic proteins (BMPs) are a family of more than 30 ligands and several receptors, such as activin like kinases (ALKs) and bone morphogenetic protein receptor (BMPR). Physiological significance of these proteins lies in their prominent role during homeostasis, apoptosis, tissue remodeling, embryonic patterning, and normal development. Fibrodysplasia ossificans progressive (FOP) is one among several other diseases caused by impaired BMP signaling. FOP is caused by the pathogenicity of activating mutation of ALK2. In order to treat FOP, a search for good inhibitors of ALK2 based on dorsomorphin and LDN substitution, which in essence is a ligand based search of inhibitors, is in progress. Contributing to this area of research we identified several lead molecules based on protein structure using virtual screening. After virtual screening of a huge library of small molecules and ab initio calculation of selected molecules for drug efficacy, we did molecular dynamic simulation of lead molecules and protein complexes. We identified five potential drug molecules that show very stable binding on the same binding site as LDN-213844. We also ranked these lead molecules based on MM/PBSA binding energy. This study provides a basis to think beyond the pyrimidine nucleus of dorsomorphin/LDN and design new chemical derivatives for effective treatment of FOP. Graphical abstract Small molecule inhibitors of ALK2.


Subject(s)
Activin Receptors, Type I , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Activin Receptors, Type I/antagonists & inhibitors , Activin Receptors, Type I/chemistry , Binding Sites , Drug Evaluation, Preclinical , Humans
16.
Biophys Chem ; 240: 50-62, 2018 09.
Article in English | MEDLINE | ID: mdl-29890403

ABSTRACT

GDF-5 mediated signal transduction regulating chondrogenesis and skeletogenesis involves three different type-I receptors viz. Act-RI, BMPRIA and BMPRIB. BMPRIA and BMPRIB generally shows temporal and spatial co-expression but some spatially different expression pattern has also been observed. BMPRIA receptor is the key receptor implicated in BMP signalling during osteogenesis and is expressed in osteoblasts during the course of bone formation. However, BMPRIB appears to be primarily expressed in mesenchymal pre-cartilage condensations and also found in differentiated osteoblast and chondrocytes. The extracellular pH affects bone cell function and it is experimentally known that mineralization of bone is affected by shift of pH in cultured osteoblast. Here we report the effect of pH on dynamics of water present at the interface of GDF-5:BMPRIA and GDF-5:BMPRIB and binding interaction energy of these complexes. Water dynamics at different pH was analysed using residence time and hydrogen bond relaxation kinetics. pH influences the interaction energy between GDF-5 and BMPRIA and BMPRIB receptors indicating the electrostatic environment modulating the activity of two receptors. This pH dependence of interaction energy is further supported by similar behaviour of hydrogen bond existence of buried water molecules at the interface. In contrast to this the slow and fast exchanging water molecules do not show similar pH dependence of hydrogen bonding relaxation kinetics. Hence; we conclude that only buried water molecule at the interface influences the protein-protein interaction and the electrostatic environment of the extracellular fluid might decide the specificity of the two receptors.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/metabolism , Growth Differentiation Factor 5/metabolism , Water/chemistry , Amino Acid Sequence , Bone Morphogenetic Protein Receptors, Type I/chemistry , Bone Morphogenetic Protein Receptors, Type I/genetics , Growth Differentiation Factor 5/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Sequence Alignment , Static Electricity
17.
Arch Biochem Biophys ; 645: 87-99, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29524430

ABSTRACT

Methylglyoxal (MGO), a reactive dicarbonyl metabolite is a potent arginine directed glycating agent which has implications for diabetes-related complications. Dicarbonyl metabolites are produced endogenously and in a state of misbalance, they contribute to cell and tissue dysfunction through protein and DNA modifications causing dicarbonyl stress. MGO is detoxified by glyoxalase 1 (GLO1) system in the cytoplasm. Reactive oxygen species (ROS) are known to aggravate the glycation process. Both the processes are closely linked, and their combined activity is often referred to as "glycoxidation" process. Glycoxidation of proteins has several consequences such as type 2 diabetes mellitus (T2DM), aging etc. In this study, we have investigated the glycation of low-density lipoprotein (LDL) using different concentrations of MGO for varied incubation time periods. The structural perturbations induced in LDL were analyzed by UV-Vis, fluorescence, circular dichroism spectroscopy, molecular docking studies, polyacrylamide gel electrophoresis, FTIR, thermal denaturation studies, Thioflavin T assay and isothermal titration calorimetry. The ketoamine moieties, carbonyl content and HMF content were quantitated in native and glycated LDL. Simulation studies were also done to see the effect of MGO on the secondary structure of the protein. We report structural perturbations, increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analog (native LDL). We report the structural perturbations in LDL upon modification with MGO which could obstruct its normal physiological functions and hence contribute to disease pathogenesis and associated complications.


Subject(s)
Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Glycation End Products, Advanced , Humans , Protein Conformation , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology
18.
J Mol Model ; 23(1): 7, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27966018

ABSTRACT

The phosphodiesterase (PDE) family of proteins are important regulators of signal transduction, which they achieve by controlling the secondary messengers cyclic AMP (cAMP) and cyclic GMP (cGMP). cAMP and cGMP are involved in many critical intracellular processes such as gene transcription, kinase activation, signal transduction in learning and memory, and channel function as secondary messengers. The involvement of PDEs in neuronal communication has made them important therapeutic targets. Considering the recent discovery that PDE2A inhibition can improve cognitive functioning, a combined molecular dynamics simulation and scoring and docking study was carried out to identify selective inhibitors of PDE2A that specifically interact with the recently discovered hydrophobic groove in PDE2A. Using the X-ray crystal structure of PDE2A (from PDB ID: 4HTX), we investigated the binding modes of a range of promising inhibitors based on the known PDE2A inhibitor BAY60-7550 to PDE2A. Graphical abstract The lead molecule showing highest MMPBSA binding energy with 2D and 3D binding pose in hydrophobic groove.


Subject(s)
Cyclic AMP/chemistry , Cyclic GMP/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Imidazoles/chemistry , Nootropic Agents/chemistry , Phosphodiesterase Inhibitors/chemistry , Triazines/chemistry , Amino Acid Motifs , Catalytic Domain , Crystallography, X-Ray , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemical synthesis , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Nootropic Agents/chemical synthesis , Phosphodiesterase Inhibitors/chemical synthesis , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Static Electricity , Structure-Activity Relationship , Thermodynamics , Triazines/chemical synthesis
19.
J Biomol Struct Dyn ; 35(10): 2224-2234, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27426435

ABSTRACT

BMP-2 is widely used for bone regeneration because of its ability to induce osteoblast differentiation and proliferation. The pharmaceutical application of BMP-2 as bone implant makes the studies on stability and conformational dynamics very relevant as proteins are functional only in their native three-dimensional state. Knowing the factors affecting BMP-2 structure becomes essential for designing bone implants activated by BMP-2. In order to explore the influence of temperature and hydration on protein conformation, we have performed the molecular dynamics (MD) simulations at the time scale of 100 ns with two different force fields. We have examined the dynamic behaviour of BMP-2 monomer and dimer in aqueous medium as well as in vacuum at four different temperatures (300, 350, 400 and 450 K). MD simulation of BMP-2 monomer and dimer in water and vacuum environments shows the major contribution of water in structure stabilization. Temperature of the system affects the secondary structure differently in case of monomer and dimer simulation and the dynamics also depends on the environment viz. vacuum and aqueous. Vacuum simulations show very early loss of the major secondary structure content. On the other hand, BMP-2 monomer and dimer in aqueous environment show the unfolding of α-helix with increasing temperature. This unfolded α-helix is converted into ß-sheet at 400 K in monomer of BMP-2. Contrary to this, we did not observe ß-sheet formation in dimer BMP-2 even at 450 K indicating that monomers are more aggregation prone entity as compared to dimers of BMP-2.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Water/chemistry , Crystallography, X-Ray , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Temperature , Thermodynamics , Vacuum
20.
Neoplasia ; 17(10): 757-66, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26585231

ABSTRACT

To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer cells by clonogenic survival and in patient-derived xenografts by tumor growth. The contributions of HR repair inhibition and G2 checkpoint abrogation to sensitization were assessed by γH2AX, BRCA2 manipulation, and RAD51 focus formation and pHistone H3 flow cytometry, respectively. We found that AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type but not BRCA2 mutant pancreatic cancer cells. In all cells, AZD1775 caused inhibition of CDK1 phosphorylation and G2 checkpoint abrogation. However, sensitization by AZD1775 was associated with persistent γH2AX and inhibition of RAD51 focus formation. In HR-proficient (BRCA2 wild-type) or -deficient (BRAC2 null) isogenic cells, AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type, but not in BRCA2 null cells, despite significant G2 checkpoint abrogation. In patient-derived pancreatic tumor xenografts, AZD1775 significantly inhibited tumor growth and impaired RAD51 focus formation in response to gemcitabine-radiation. In conclusion, WEE1 inhibition by AZD1775 is an effective strategy for sensitizing pancreatic cancers to gemcitabine chemoradiation. Although this sensitization is accompanied by inhibition of CDK1 phosphorylation and G2 checkpoint abrogation, this mechanism is not sufficient for sensitization. Our findings demonstrate that sensitization to chemoradiation by WEE1 inhibition results from inhibition of HR repair and suggest that patient tumors without underlying HR defects would benefit most from this therapy.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Nuclear Proteins/antagonists & inhibitors , Pancreatic Neoplasms/therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Recombinational DNA Repair/drug effects , Animals , Apoptosis/drug effects , Blotting, Western , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Chemoradiotherapy , DNA Damage/drug effects , Deoxycytidine/pharmacology , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Mice , Mice, Nude , Nuclear Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Protein-Tyrosine Kinases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...