Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37048730

ABSTRACT

BACKGROUND: This ex vivo experimental study sought to compare screw planning accuracy of a self-derived deep-learning-based (DL) and a commercial atlas-based (ATL) tool and to assess robustness towards pathologic spinal anatomy. METHODS: From a consecutive registry, 50 cases (256 screws in L1-L5) were randomly selected for experimental planning. Reference screws were manually planned by two independent raters. Additional planning sets were created using the automatic DL and ATL tools. Using Python, automatic planning was compared to the reference in 3D space by calculating minimal absolute distances (MAD) for screw head and tip points (mm) and angular deviation (degree). Results were evaluated for interrater variability of reference screws. Robustness was evaluated in subgroups stratified for alteration of spinal anatomy. RESULTS: Planning was successful in all 256 screws using DL and in 208/256 (81%) using ATL. MAD to the reference for head and tip points and angular deviation was 3.93 ± 2.08 mm, 3.49 ± 1.80 mm and 4.46 ± 2.86° for DL and 7.77 ± 3.65 mm, 7.81 ± 4.75 mm and 6.70 ± 3.53° for ATL, respectively. Corresponding interrater variance for reference screws was 4.89 ± 2.04 mm, 4.36 ± 2.25 mm and 5.27 ± 3.20°, respectively. Planning accuracy was comparable to the manual reference for DL, while ATL produced significantly inferior results (p < 0.0001). DL was robust to altered spinal anatomy while planning failure was pronounced for ATL in 28/82 screws (34%) in the subgroup with severely altered spinal anatomy and alignment (p < 0.0001). CONCLUSIONS: Deep learning appears to be a promising approach to reliable automated screw planning, coping well with anatomic variations of the spine that severely limit the accuracy of ATL systems.

2.
Medicina (Kaunas) ; 58(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36143877

ABSTRACT

Background and Objectives: In the literature, spinal navigation and robot-assisted surgery improved screw placement accuracy, but the majority of studies only qualitatively report on screw positioning within the vertebra. We sought to evaluate screw placement accuracy in relation to a preoperative trajectory plan by three-dimensional quantification to elucidate technical benefits of navigation for lumbar pedicle screws. Materials and Methods: In 27 CT-navigated instrumentations for degenerative disease, a dedicated intraoperative 3D-trajectory plan was created for all screws. Final screw positions were defined on postoperative CT. Trajectory plans and final screw positions were co-registered and quantitatively compared computing minimal absolute differences (MAD) of screw head and tip points (mm) and screw axis (degree) in 3D-space, respectively. Differences were evaluated with consideration of the navigation target registration error. Clinical acceptability of screws was evaluated using the Gertzbein−Robbins (GR) classification. Results: Data included 140 screws covering levels L1-S1. While screw placement was clinically acceptable in all cases (GR grade A and B in 112 (80%) and 28 (20%) cases, respectively), implanted screws showed considerable deviation compared to the trajectory plan: Mean axis deviation was 6.3° ± 3.6°, screw head and tip points showed mean MAD of 5.2 ± 2.4 mm and 5.5 ± 2.7 mm, respectively. Deviations significantly exceeded the mean navigation registration error of 0.87 ± 0.22 mm (p < 0.001). Conclusions: Screw placement was clinically acceptable in all screws after navigated placement but nevertheless, considerable deviation in implanted screws was noted compared to the initial trajectory plan. Our data provides a 3D-quantitative benchmark for screw accuracy achievable by CT-navigation in routine spine surgery and suggests a framework for objective comparison of screw outcome after navigated or robot-assisted procedures. Factors contributing to screw deviations should be considered to assure optimal surgical results when applying navigation for spinal instrumentation.


Subject(s)
Pedicle Screws , Spinal Fusion , Humans , Lumbar Vertebrae/surgery , Retrospective Studies , Spinal Fusion/methods , Spine/surgery , Tomography, X-Ray Computed/methods
3.
Med Image Anal ; 81: 102557, 2022 10.
Article in English | MEDLINE | ID: mdl-35933944

ABSTRACT

Fluoroscopy-guided trauma and orthopedic surgeries involve the repeated acquisition of correct anatomy-specific standard projections for guidance, monitoring, and evaluating the surgical result. C-arm positioning is usually performed by hand, involving repeated or even continuous fluoroscopy at a cost of radiation exposure and time. We propose to automate this procedure and estimate the pose update for C-arm repositioning directly from a first X-ray without the need for a patient-specific computed tomography scan (CT) or additional technical equipment. Our method is trained on digitally reconstructed radiographs (DRRs) which uniquely provide ground truth labels for an arbitrary number of training examples. The simulated images are complemented with automatically generated segmentations, landmarks, and with simulated k-wires and screws. To successfully achieve a transfer from simulated to real X-rays, and also to increase the interpretability of results, the pipeline was designed to closely reflect the actual clinical decision-making process followed by spinal neurosurgeons. It explicitly incorporates steps such as region-of-interest (ROI) localization, detection of relevant and view-independent landmarks, and subsequent pose regression. The method was validated on a large human cadaver study simulating a real clinical scenario, including k-wires and screws. The proposed procedure obtained superior C-arm positioning accuracy of dθ=8.8°±4.2° average improvement (pt-test≪0.01), robustness, and generalization capabilities compared to the state-of-the-art direct pose regression framework.


Subject(s)
Spine , Surgery, Computer-Assisted , Fluoroscopy/methods , Humans , Radiography , Spine/diagnostic imaging , Spine/surgery , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
4.
J Med Imaging (Bellingham) ; 9(3): 034001, 2022 May.
Article in English | MEDLINE | ID: mdl-35572381

ABSTRACT

Purpose: To assess the result in orthopedic trauma surgery, usually three-dimensional volume data of the treated region is acquired. With mobile C-arm systems, these acquisitions can be performed intraoperatively, reducing the number of required revision surgeries. However, the acquired volumes are typically not aligned to the anatomical regions. Thus, the multiplanar reconstructed (MPR) planes need to be adjusted manually during the review of the volume. To speed up and ease the workflow, an automatic parameterization of these planes is needed. Approach: We present a detailed study of multitask learning (MTL) regression networks to estimate the parameters of the MPR planes. First, various mathematical descriptions for rotation, including Euler angle, quaternion, and matrix representation, are revised. Then, two different MTL network architectures based on the PoseNet are compared with a single task learning network. Results: Using a matrix description rather than the Euler angle description, the accuracy of the regressed normals improves from 7.7 deg to 7.3 deg in the mean value for single anatomies. The multihead approach improves the regression of the plane position from 7.4 to 6.1 mm, whereas the orientation does not benefit from this approach. Thus, the achieved accuracy meets the reported interrater variance in similarly complex body regions of up to 6.3 deg for the normals and up to 9.3 mm for the plane position. Conclusions: The use of a multihead approach with shared features leads to more accurate plane regression compared with the use of individual networks for each task. It also improves the angle estimation for the ankle region. The reported results are in the same range as manual plane adjustments. The use of a combined network with shared parameters requires less memory, which is a great benefit for the implementation of an application for the surgical environment.

5.
Spine J ; 22(10): 1666-1676, 2022 10.
Article in English | MEDLINE | ID: mdl-35584757

ABSTRACT

BACKGROUND CONTEXT: Navigation and robotic systems have been increasingly applied to spinal instrumentation but dedicated screw planning is a time-consuming prerequisite to tap the full potential of these techniques. PURPOSE: To develop and validate an automated planning tool for lumbosacral pedicle screw placement using a convolutional neural network (CNN) to facilitate the planning process. STUDY DESIGN/SETTING: Retrospective analysis and processing of CT and screw planning data randomly selected from a consecutive registry of CT-navigated instrumentations from a single academic institution. PATIENT SAMPLE: Data from 179 cases was processed for CNN training and validation (155 for training, 24 for validation) leveraging a total of 1182 screws (1052 for training, 130 for validation). OUTCOME MEASURES: Quantitative and qualitative (Gertzbein-Robbins classification [GR]) validation via comparison of automatically and manually planned reference screws, inter-rater and intra-rater variability. METHODS: Annotated data from CT-navigated instrumentation was used to train a CNN operating in a vertebra instance-based approach employing a state-of-the-art U-Net framework. Internal five-fold cross-validation and external validation on an independent cohort not previously involved in training was performed. Quantitative validation of automatically planned screws was performed in comparison to corresponding manually planned screws by calculating the minimal absolute difference (MAD) of screw head and tip points, length and diameter, screw direction and Dice coefficient. Results were evaluated in relation to inter-rater and intra-rater variability of manual screw planning. RESULTS: Automated screw planning was successful in all targeted 130 screws. Compared with manually planned screws as a reference, mean MAD of automatically planned screws was 4.61±2.27 mm for screw head, 3.96±2.19 mm for tip points and 5.51±3.64° for screw direction. These differences were either statistically comparable or significantly smaller when compared with interrater variability of manual screw planning (p>.99 for head point and direction, p=.004 for tip point, respectively). Mean Dice coefficient of 0.61±0.16 indicated significantly greater agreement of automatic screws with the manual reference compared with interrater agreement (Dice 0.56±0.18, p<.001). Automatically planned screws were marginally shorter (MAD 3.4±3.2 mm) and thinner (MAD mean 0.3±0.6 mm) compared with the manual reference, but with statistical significance (p<.0001, respectively). Automatically planned screws were GR grade A in 96.2% in qualitative validation. Planning time was significantly shorter with the automatic approach (0:41 min vs. 6:41 min, p<.0001). CONCLUSIONS: We derived and validated a fully automated planning tool for lumbosacral pedicle screws using a CNN. Our validation showed noninferiority to manual screw planning and provided sufficient accuracy to facilitate and expedite the screw planning process. These results offer a high potential to improve workflows in spine surgery when integrated into navigation or robotic assistance systems.


Subject(s)
Pedicle Screws , Spinal Fusion , Surgery, Computer-Assisted , Humans , Neural Networks, Computer , Retrospective Studies , Spinal Fusion/methods , Spine/surgery , Surgery, Computer-Assisted/methods
7.
Int J Comput Assist Radiol Surg ; 16(5): 767-777, 2021 May.
Article in English | MEDLINE | ID: mdl-33877526

ABSTRACT

PURPOSE: Reduction and osteosynthesis of ankle fractures is a challenging surgical procedure when it comes to the verification of the reduction result. Evaluation is conducted using intra-operative imaging of the injured ankle and depends on the expertise of the surgeon. Studies suggest that intra-individual variance of the ankle bone shape and pose is considerably lower than the inter-individual variance. It stands to reason that the information gain from the healthy contralateral side can help to improve the evaluation. METHOD: In this paper, an assistance system is proposed that provides a side-to-side view of the two ankle joints for visual comparison and instant evaluation using only one 3D C-arm image. Two convolutional neural networks (CNN) are employed to extract the relevant image regions and pose information of each ankle so that they can be aligned with each other. A first U-Net uses a sliding window to predict the location of each ankle. The standard plane estimation is formulated as segmentation problem so that a second U-Net predicts the three viewing planes for alignment. RESULTS: Experiments were conducted to assess the accuracy of the individual steps on 218 unilateral ankle datasets as well as the overall performance on 7 bilateral ankle datasets. The experiments on unilateral ankles yield a median position-to-plane error of [Formula: see text] mm and a median angular error between 2.98[Formula: see text] and 3.71[Formula: see text] for the plane normals. CONCLUSION: Standard plane estimation via segmentation outperforms direct pose regression. Furthermore, the complete pipeline was evaluated including ankle detection and subsequent plane estimation on bilateral datasets. The proposed pipeline enables a direct contralateral side comparison without additional radiation. This has the potential to ease and improve the intra-operative evaluation for the surgeons in the future and reduce the need for revision surgery.


Subject(s)
Ankle Fractures/diagnostic imaging , Ankle Joint/diagnostic imaging , Fracture Fixation, Internal/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Humans , Intraoperative Period , Neural Networks, Computer , Reoperation , Reproducibility of Results
8.
Int J Comput Assist Radiol Surg ; 15(7): 1095-1105, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32533315

ABSTRACT

PURPOSE: Guidance and quality control in orthopedic surgery increasingly rely on intra-operative fluoroscopy using a mobile C-arm. The accurate acquisition of standardized and anatomy-specific projections is essential in this process. The corresponding iterative positioning of the C-arm is error prone and involves repeated manual acquisitions or even continuous fluoroscopy. To reduce time and radiation exposure for patients and clinical staff and to avoid errors in fracture reduction or implant placement, we aim at guiding-and in the long-run automating-this procedure. METHODS: In contrast to the state of the art, we tackle this inherently ill-posed problem without requiring patient-individual prior information like preoperative computed tomography (CT) scans, without the need of registration and without requiring additional technical equipment besides the projection images themselves. We propose learning the necessary anatomical hints for efficient C-arm positioning from in silico simulations, leveraging masses of 3D CTs. Specifically, we propose a convolutional neural network regression model that predicts 5 degrees of freedom pose updates directly from a first X-ray image. The method is generalizable to different anatomical regions and standard projections. RESULTS: Quantitative and qualitative validation was performed for two clinical applications involving two highly dissimilar anatomies, namely the lumbar spine and the proximal femur. Starting from one initial projection, the mean absolute pose error to the desired standard pose is iteratively reduced across different anatomy-specific standard projections. Acquisitions of both hip joints on 4 cadavers allowed for an evaluation on clinical data, demonstrating that the approach generalizes without retraining. CONCLUSION: Overall, the results suggest the feasibility of an efficient deep learning-based automated positioning procedure, which is trained on simulations. Our proposed 2-stage approach for C-arm positioning significantly improves accuracy on synthetic images. In addition, we demonstrated that learning based on simulations translates to acceptable performance on real X-rays.


Subject(s)
Deep Learning , Femur/surgery , Fluoroscopy/methods , Lumbar Vertebrae/surgery , Orthopedic Procedures/methods , Computer Simulation , Humans , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...