Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 40(6): 665-675, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34541977

ABSTRACT

Management of plastic, rubber and cellulosic waste from various industries is a challenging task. An engineering scale plasma pyrolysis based incinerator has been commissioned for incineration of combustible waste, including plastic, rubber and cellulose. Operational trials of wastes with simulated composition show a weight reduction factor of more than 18 and volume reduction factor of more than 30. The volume reduction factor is tenfold higher than the compaction process currently practised for rubber and plastic wastes. Representative residual ash samples derived from these runs are subjected to their elemental analysis using EDXRF technique and results are comparable with the published literature. Relative variation of individual elements is attributed to the type of waste and feed composition. Analysis is aided with the calculation of index of geoaccumulation, enrichment factor (EF), contamination factor (CF) and pollution load index (PLI). From this study, it is evident that S, Cr, Zn, As, Se, Hg and Pb are of concern for environment in residual ash from plasma incineration of combustible waste. The efficacy of the incineration process is evaluated; C, H and O reduction achieved is more than 98% and overall enrichment ratio (ER) for the inorganic elements is more than 4.5. This study highlights the importance of elemental composition for the performance analysis of the plasma based incineration as well as hazards evaluation of constituents in residual ash for its further management.


Subject(s)
Incineration , Metals, Heavy , Coal Ash , Environmental Pollution , Incineration/methods , Metals, Heavy/analysis , Plastics , Rubber , Solid Waste/analysis
2.
J Hazard Mater ; 280: 63-70, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25128895

ABSTRACT

Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides (233)U (4.82 MeV α) and (241)Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr(2+), Ru(3+), Fe(3+), etc., in the uptake process indicated CeVO4 nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.


Subject(s)
Americium/isolation & purification , Cerium/chemistry , Nanoparticles/chemistry , Uranium/isolation & purification , Vanadates/chemistry , Water Pollutants, Radioactive/isolation & purification , Adsorption , Kinetics , Microscopy, Electron, Transmission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...