Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 127: 107507, 2024.
Article in English | MEDLINE | ID: mdl-38636673

ABSTRACT

The Health and Environmental Sciences Institute (HESI) Cardiac Safety Committee designed and created a publicly accessible database with an initial set of 128 pharmacologically defined pharmaceutical agents, many with known cardiotoxic properties. The database includes specific information about each compound that could be useful in evaluating hypotheses around mechanisms of drug-induced cardiac toxicity or for development of novel cardiovascular safety assays. Data on each of the compounds was obtained from published literature and online sources (e.g., DrugBank.ca and International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY) and was curated by 10 subject matter experts. The database includes information such as compound name, pharmacological mode of action, characterized cardiac mode of action, type of cardiac toxicity, known clinical cardiac toxicity profile, animal models used to evaluate the cardiotoxicity profile, routes of administration, and toxicokinetic parameters (i.e., Cmax). Data from both nonclinical and clinical studies are included for each compound. The user-friendly web interface allows for multiple approaches to search the database and is also intended to provide a means for the submission of new data/compounds from relevant users. This will ensure that the database is constantly updated and remains current. Such a data repository will not only aid the HESI working groups in defining drugs for use in any future studies, but safety scientists can also use the database as a vehicle of support for broader cardiovascular safety studies or exploring mechanisms of toxicity associated with certain pharmacological modes of action.


Subject(s)
Cardiotoxicity , Databases, Pharmaceutical , Drug-Related Side Effects and Adverse Reactions , Animals , Humans , Cardiotoxicity/etiology , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug Evaluation, Preclinical/methods , Databases, Factual , Pharmaceutical Preparations
2.
J Am Coll Cardiol ; 77(15): 1922-1933, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33858628

ABSTRACT

The momentum of cardiovascular drug development has slowed dramatically. Use of validated cardiac biomarkers in clinical trials could accelerate development of much-needed therapies, but biomarkers have been used less for cardiovascular drug development than in therapeutic areas such as oncology. Moreover, there are inconsistences in biomarker use in clinical trials, such as sample type, collection times, analytical methods, and storage for future research. With these needs in mind, participants in a Cardiac Safety Research Consortium Think Tank proposed the development of international guidance in this area, together with improved quality assurance and analytical methods, to determine what biomarkers can reliably show. Participants recommended the development of systematic methods for sample collection, and the archiving of samples in all cardiovascular clinical trials (including creation of a biobank or repository). The academic and regulatory communities also agreed to work together to ensure that published information is fully and clearly expressed.


Subject(s)
Biomarkers/analysis , Cardiovascular Diseases/diagnosis , Clinical Trials as Topic/standards , Cardiovascular Diseases/drug therapy , Drug Discovery , Humans , Precision Medicine , Prognosis , Treatment Outcome
3.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822771

ABSTRACT

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Subject(s)
Adult Stem Cells/drug effects , Arrhythmias, Cardiac/chemically induced , Cardiotoxins/toxicity , Myocytes, Cardiac/drug effects , Practice Guidelines as Topic/standards , Validation Studies as Topic , Adult Stem Cells/pathology , Adult Stem Cells/physiology , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Myocytes, Cardiac/pathology
4.
J Pharmacol Toxicol Methods ; 105: 106893, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32619502

ABSTRACT

INTRODUCTION: Drug-induced inotropic change is a risk factor in drug development; thus, de-risking is desired in the early stages of drug development. Unlike proarrhythmic risk assessment using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), few in vitro models were validated to predict cardiac contractility. Motion field imaging (MFI), a high-resolution block matching-based optical flow technique, was expected to possess high quantitative predictivity in the detection of contraction speed. We aimed to establish an in vitro model to assess drug-induced contractile changes using hiPSC-CMs and MFI. METHODS: MFI was designed to noninvasively characterize cardiomyocyte contractile behavior by analyzing light microscope video images, and maximum contraction speed (MCS) was used as the index of contractility. Using MFI, 9 inactive compounds, 10 negative inotropes, and 10 positive inotropes were tested. Two negative chronotropes, ZD7288 and ivabradine, were also tested. To determine the sensitivity and specificity of the assay, the minimum effective concentration of the MCS was compared with the human effective total therapeutic concentration for 28 compounds in clinical use. RESULTS: For 8 negative and 8 positive inotropes, the effects observed in in vivo and clinical studies were detected in MFI assay. MFI assay showed negative chronotropic changes without inotropic changes. MFI assay presented sufficient specificity (83%) and sensitivity (88%), and RNA-sequence analysis provided an insight into the relationship between occurrence of the false compounds and target gene expression. DISCUSSION: We demonstrated the utility of MFI assay using hiPSC-CMs to assess drug-induced contractile function. These results will facilitate the de-risking of compounds during early drug development.


Subject(s)
Cardiotonic Agents/adverse effects , Cardiotoxicity/diagnosis , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Cells, Cultured , Gene Expression/drug effects , Humans , Risk Factors , Sensitivity and Specificity , Video Recording/methods
5.
Toxicol Appl Pharmacol ; 383: 114761, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31533062

ABSTRACT

Recent developments of novel targeted therapies are contributing to the increased long-term survival of cancer patients; however, drug-induced cardiotoxicity induced by cancer drugs remains a serious problem in clinical settings. Nevertheless, there are few in vitro cell-based assays available to predict this toxicity, especially from the aspect of morphology. Here, we developed a simple two-dimensional (2D) morphological assessment system, 2DMA, to predict drug-induced cardiotoxicity in cancer patients using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with image-based high-content analysis in a high-throughput manner. To assess the effects of drugs on cardiomyocytes, we treated iPSC-CMs with 28 marketed pharmaceuticals and measured two key parameters: number of cell nuclei and sarcomere morphology. Drugs that significantly perturbed these two parameters at concentrations ≤30 times the human Cmax value were regarded as positive in the test. Based on these criteria, the sensitivity and specificity of the 2DMA system were 81% and 100%, respectively. Moreover, the translational predictability of 2DMA was comparable with that of a three-dimensional cardiotoxicity assay. RNA sequencing further revealed that the expression levels of several genes related to sarcomere components decreased following treatment with sunitinib, suggesting that inhibition of the synthesis of proteins that comprise the sarcomere contributes to drug-induced sarcomere disruption. Based on these features, the 2DMA system provides mechanistic insight with high predictability of cancer drug-induced cardiotoxicity in humans, and could thus contribute to the reduction of drug attrition rates at early stages of drug development.


Subject(s)
Antineoplastic Agents/toxicity , Cardiotoxins/toxicity , Induced Pluripotent Stem Cells/drug effects , Microscopy, Electron/methods , Myocytes, Cardiac/drug effects , Cardiotoxicity/pathology , Cell Culture Techniques/methods , Cells, Cultured , Fluorescent Dyes/analysis , Forecasting , Humans , Induced Pluripotent Stem Cells/chemistry , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/pathology
6.
J Pharmacol Toxicol Methods ; 99: 106612, 2019.
Article in English | MEDLINE | ID: mdl-31319140

ABSTRACT

INTRODUCTION: Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS: Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS: Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION: In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...