Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 123(4): 906-919, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30589543

ABSTRACT

A computational protocol is employed to glean new insight into the kinetics of several 1,5-hydrogen atom (H) shift reactions subsequent to first- and second-generation OH/O2 additions to isoprene. The M06-2X density functional was initially used with the Nudged Elastic Band (NEB) method to determine the potential energy surface of OH/O2 addition reactions, the 1,5-H shift reactions, and the fragmentation exit channels. The Master Equation Solver for Multi-Energy Well Reactions (MESMER) was applied to determine the rate constants for OH addition and the 1,5-H shifts. M06-2X was capable of quantifying the rate constants of OH addition to the first and second double bonds of isoprene with deviations less than 17% from the experimentally determined values. However, M06-2X underestimated the 1,5-H shift rate constants of second-generation isoprene peroxy radicals. Consequently, MN15, ωB97X-D, and CBS-QB3 methods were employed to compute average barrier heights to first- and second-generation 1,5-H shifts. In the first generation, the rate constants of H abstraction by ß-(1,2) and (4,3) isoprene hydroxy-peroxy radicals from the neighboring hydroxyl group are 1.1 × 10-3 and 2.4 × 10-3 s-1, respectively. These values are determined primarily by the barrier of the H shift reaction and, to a smaller albeit nonnegligible extent, by the stability of the resulting alkoxy radical and the exit barrier leading to C-C bond dissociation. In contrast, the average second-generation rate constant of 1,5-H shifts from H-R-OH sites to the peroxy radical is 1.8 × 10-1 s-1, with tunneling playing the significant role of increasing this value relative to first-generation 1,5-H shifts. Under low NO x conditions, first-generation isoprene oxidation reactions may recycle HO x at levels ranging from 10 to 30% due in large part to 1,5-H shifts, with the recycling efficiency being sensitive to HO2 concentrations and temperature. HO x recycling is expected to increase to levels beyond 80% in second-generation reactions of oxidized isoprene species because of isoprene epoxydiol (IEPOX) formation and further 1,5-H shifts that are kinetically favorable.

SELECTION OF CITATIONS
SEARCH DETAIL
...