Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Gene ; 927: 148669, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866259

ABSTRACT

Bacillus species are extensively documented as plant growth-promoting rhizobacteria, contributing significantly to the enhancement of soil fertility, nutrient recycling, and the control of phytopathogens. Utilizing them as biocontrol agents represents an environmentally friendly strategy, particularly within the rhizospheric community. This study presents the comprehensive genome sequences of three B. velezensis strains (LGMB12, LGMB319, and LGMB426) which were previously isolated from root samples of maize (Zea mays L.), along with a type strain FZB42. The research assesses the capability of the three strains for antagonizing fungi, specifically Fusarium graminearum, Fusarium verticillioides, Colletotrichum graminicola, and Stenocarpella sp. In paired cultures involving maize fungi, treatments containing bacteria B. velezensis exhibited statistically significant differences compared to both negative and positive treatments in terms of antagonism. Furthermore, genome mining techniques were employed to explore their inherent antagonistic potential. The assembly revealed that strains LGMB12, LGMB319, LGMB426, and FZB42 exhibit genome sizes of 4,187,541 bp, 4,244,954 bp, 3,976,537 bp, and 3,990,518 respectively. Their respective G + C content stands at 46.42 %, 46.50 %, 46.51 %, and 46.38 %. Moreover, the genomes present multiple gene clusters responsible for the synthesis of secondary metabolites and carbohydrate-active enzymes (CAZymes). These clusters highlight a diverse array of antibacterial and antifungal properties, complemented by numerous plant growth-promoting genes. These results highlight the potential of B. velezensis LGMB12, LGMB319, and LGMB426 strains as biocontrol and plant growth promotion agents, being promising candidates for further studies in agricultural production, including field trials.

2.
Braz J Microbiol ; 52(4): 1807-1823, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34458975

ABSTRACT

Plant growth-limiting factors, such as low nutrient availability and weak pathogen resistance, may hinder the production of several crops. Plant growth-promoting bacteria (PGPB) used in agriculture, which stimulate plant growth and development, can serve as a potential tool to mitigate or even circumvent these limitations. The present study evaluated the feasibility of using bacteria isolated from the maize rhizosphere as PGPB for the cultivation of this crop. A total of 282 isolates were collected and clustered into 57 groups based on their genetic similarity using BOX-PCR. A representative isolate from each group was selected and identified at the genus level with 16S rRNA sequencing. The identified genera included Bacillus (61.5% of the isolates), Lysinibacillus (30.52%), Pseudomonas (3.15%), Stenotrophomonas (2.91%), Paenibacillus (1.22%), Enterobacter (0.25%), Rhizobium (0.25%), and Atlantibacter (0.25%). Eleven isolates with the highest performance were selected for analyzing the possible pathways underlying plant growth promotion using biochemical and molecular techniques. Of the selected isolates, 90.9% were positive for indolepyruvate/phenylpyruvate decarboxylase, 54.4% for pyrroloquinoline quinine synthase, 36.4% for nitrogenase reductase, and 27.3% for nitrite reductase. Based on biochemical characterization, 9.1% isolates could fix nitrogen, 36.6% could solubilize phosphate, 54.5% could produce siderophores, and 90.9% could produce indole acetic acid. Enzymatic profiling revealed that the isolates could degrade starch (90.1%), cellulose (72.7%), pectin (81.8%), protein (90.9%), chitin (18.2%), urea (54.5%), and esters (45.4%). Based on the data obtained, we identified three Bacillus spp. (LGMB12, LGMB273, and LGMB426), one Stenotrophomonas sp. (LGMB417), and one Pseudomonas sp. (LGMB456) with the potential to serve as PGPB for maize. Further research is warranted to evaluate the biotechnological potential of these isolates as biofertilizers under field conditions.


Subject(s)
Bacteria , Rhizosphere , Soil Microbiology , Zea mays , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/metabolism , Biodiversity , Enzymes/metabolism , Phylogeny , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Zea mays/microbiology
3.
Microbiol Res ; 228: 126299, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31422231

ABSTRACT

Wastewaters from textile dyeing industries represent an ecological concern, notably due to the known toxicity of azo dyes to the local microbiome and human health. Although physicochemical approaches are the rule for the treatment of industrial effluents, biological strategies such as enzyme-mediated dye destaining is a promising alternative. Notwithstanding a broad range of microorganisms, including fungi, algae, yeast, and bacteria, display dye-destaining properties, most of the literature has focused in ligninolytic fungi, leaving other classes of organisms somehow ignored. In this study, six endophytic strains isolated from Maytenus ilicifolia were studied for their destaining activity. The phylogenetic and morphological analysis allowed the identification of strain LGMF1504 as Neopestalotiopsis sp. LGMF1504 that decolorized several commercial dyes as the result of a mycelium-associated laccase. The enzyme expression was modulated by carbon and nitrogen content in the culture medium, it was weakly affected by the presence of aromatic compounds and metal ions while some common laccase mediators improved the destaining activity onto dye substrates. The best culture condition observed for laccase activity was a basic culture medium containing 5 g L-1 starch and 15 g L-1 ammonium tartrate. The laccase activity showed low substrate specificity and almost unaltered performance in a wide range of pH values and NaCl concentrations, suggesting the potential of Neopestalotiopsis sp. LGMF1504 for biodegradation approaches.


Subject(s)
Coloring Agents/metabolism , Endophytes/metabolism , Laccase/metabolism , Mycelium/metabolism , Azo Compounds/toxicity , Biodegradation, Environmental , Carbon , Coloring Agents/toxicity , DNA, Fungal , Endophytes/classification , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Hydrogen-Ion Concentration , Metals , Multilocus Sequence Typing , Nitrogen , Phylogeny , Sodium Chloride/analysis , Textile Industry , Wastewater
4.
Rev Soc Bras Med Trop ; 52: e20180473, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30843968

ABSTRACT

INTRODUCTION: Candidiasis is the most frequent opportunistic mycosis in humans and can cause mortality, particularly in immunodeficient patients. One major concern is the increasing number of infections caused by drug-resistant Candidas trains, as these cannot be efficiently treated with standard therapeutics. The most common mechanism of fluconazole resistance in Candida is mutation of ERG11, a gene involved in the biosynthesis of ergosterol, a compound essential for cell integrity and membrane function. METHODS: Based on this knowledge, we investigated polymorphisms in the ERG11 gene of 3 Candida species isolated from immunocompromised and immunocompetent patients. In addition, we correlated the genetic data with the fluconazole susceptibility profile of the Candida isolates. RESULTS: A total of 80 Candida albicans, 8 Candida tropicalis and 6 Candida glabrata isolates were obtained from the saliva of diabetic, kidney transplant and immunocompetent patients. Isolates were considered susceptible to fluconazole if the minimum inhibitory concentration was lower than 8 µg/mL. The amino acid mutations F105L, D116E, K119N, S137L, and K128T were observed in C. albicans isolates, and T224C and G263A were found in C. tropicalis isolates. CONCLUSIONS: Despite the high number of polymorphisms observed, the mutations occurred in regions that are not predicted to interfere with ergosterol synthesis, and therefore are not related to fluconazole resistance.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candida/genetics , Diabetes Mellitus/microbiology , Fluconazole/pharmacology , Kidney Transplantation , Polymorphism, Genetic/drug effects , Adult , Aged , Candida/isolation & purification , DNA, Fungal/genetics , Drug Resistance, Fungal/genetics , Female , Humans , Immunocompetence , Male , Microbial Sensitivity Tests , Middle Aged , Mutation/drug effects , Polymerase Chain Reaction , Reference Values , Saliva/microbiology
5.
Microbiol Res ; 221: 28-35, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30825939

ABSTRACT

Endophytic fungi belonging to Muscodor genus are considered as promising alternatives to be used in biological control due to the production of volatile organic compounds (VOCs). The strains LGMF1255 and LGMF1256 were isolated from the medicinal plant Schinus terebinthifolius and, by morphological data and phylogenetic analysis, identified as belonging to Muscodor genus. Phylogenetic analysis suggests that strain LGMF1256 is a new species, which is herein introduced as Muscodor brasiliensis sp. nov. The analysis of VOCs production revealed that compounds phenylethyl alcohol, α-curcumene, and E (ß) farnesene until now has been reported only from M. brasiliensis, data that supports the classification of strain LGMF1256 as a new species. M. brasiliensis completely inhibited the phytopathogen P. digitatum in vitro. We also evaluated the ability of VOCs from LGMF1256 to inhibit the development of green mold symptoms by inoculation of P. digitatum in detached oranges. M. brasiliensis reduced the severity of diseases in 77%, and showed potential to be used for fruits storage and transportation to prevent the green mold symptoms development, eventually reducing the use of fungicides.


Subject(s)
Antifungal Agents/pharmacology , Biological Control Agents/pharmacology , Penicillium/drug effects , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Xylariales/metabolism , Anacardiaceae/microbiology , Antifungal Agents/metabolism , Biological Control Agents/metabolism , Fungicides, Industrial , Penicillium/growth & development , Phenylethyl Alcohol/metabolism , Sesquiterpenes/metabolism , Xylariales/isolation & purification
6.
Rev. Soc. Bras. Med. Trop ; 52: e20180473, 2019. tab
Article in English | LILACS | ID: biblio-990445

ABSTRACT

Abstract INTRODUCTION: Candidiasis is the most frequent opportunistic mycosis in humans and can cause mortality, particularly in immunodeficient patients. One major concern is the increasing number of infections caused by drug-resistant Candidas trains, as these cannot be efficiently treated with standard therapeutics. The most common mechanism of fluconazole resistance in Candida is mutation of ERG11, a gene involved in the biosynthesis of ergosterol, a compound essential for cell integrity and membrane function. METHODS: Based on this knowledge, we investigated polymorphisms in the ERG11 gene of 3 Candida species isolated from immunocompromised and immunocompetent patients. In addition, we correlated the genetic data with the fluconazole susceptibility profile of the Candida isolates. RESULTS: A total of 80 Candida albicans, 8 Candida tropicalis and 6 Candida glabrata isolates were obtained from the saliva of diabetic, kidney transplant and immunocompetent patients. Isolates were considered susceptible to fluconazole if the minimum inhibitory concentration was lower than 8 μg/mL. The amino acid mutations F105L, D116E, K119N, S137L, and K128T were observed in C. albicans isolates, and T224C and G263A were found in C. tropicalis isolates. CONCLUSIONS: Despite the high number of polymorphisms observed, the mutations occurred in regions that are not predicted to interfere with ergosterol synthesis, and therefore are not related to fluconazole resistance.


Subject(s)
Humans , Male , Female , Adult , Aged , Polymorphism, Genetic/drug effects , Candida/drug effects , Candida/genetics , Fluconazole/pharmacology , Kidney Transplantation , Diabetes Mellitus/microbiology , Antifungal Agents/pharmacology , Reference Values , Saliva/microbiology , Candida/isolation & purification , DNA, Fungal/genetics , Microbial Sensitivity Tests , Polymerase Chain Reaction , Drug Resistance, Fungal/genetics , Immunocompetence , Middle Aged , Mutation/drug effects
7.
Mol Plant Pathol ; 19(9): 2077-2093, 2018 09.
Article in English | MEDLINE | ID: mdl-29573543

ABSTRACT

Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.


Subject(s)
Citrus sinensis/metabolism , Citrus sinensis/microbiology , Fruit/metabolism , Fruit/microbiology , Genetic Engineering/methods , Intramolecular Lyases/metabolism , Monoterpenes/metabolism , Acyclic Monoterpenes
8.
Can J Microbiol ; 63(8): 682-689, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28376308

ABSTRACT

In this study, we evaluated the diversity of rhizobia isolated from root nodules on common bean (Phaseolus vulgaris) derived from Andean and Mesoamerican centers and grown under field and greenhouse conditions. Genetic characterization of isolates was performed by sequencing analyses of the 16S rRNA gene and 2 housekeeping genes, recA and glnII, and by the amplification of nifH. Symbiotic efficiency was evaluated by examining nodulation, plant biomass production, and plant nitrogen (N) accumulation. The influence of the environment was observed in nodulation capacity, where Rhizobium miluonense was dominant under greenhouse conditions and the Rhizobium acidisoli group prevailed under field conditions. However, strain LGMB41 fit into a separate group from the type strain of R. acidisoli in terms of multilocus phylogeny, implying that it could belong to a new species. Rhizobium miluonense LGMB73 showed the best symbiotic efficiency performance, i.e., with the highest shoot-N content (77.7 mg/plant), superior to the commercial standard strain (56.9 mg/plant). Biodiversity- and bioprospecting-associated studies are important to better understand ecosystems and to develop more effective strategies to improve plant growth using a N-fixation process.


Subject(s)
Phaseolus/microbiology , Rhizobium/isolation & purification , DNA, Bacterial/genetics , Phylogeny , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Symbiosis
9.
Environ Monit Assess ; 189(2): 88, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28144871

ABSTRACT

The current study investigates the potential for discolouration and degradation of Reactive Blue 19 and Reactive Black 5 textile dyes by endophytic fungi Phlebia sp. and Paecilomyces formosus as well as the potential cytotoxicity of products or by-products generated by the treatments in fish erythrocytes. It was observed at 30 days that both endophytes showed biodegradation activity with 0.1 g mL-1 of dyes. P. formosus showed highest extracellular and intracellular protein content levels after the 15th day, and Phlebia sp. stands out for production of extracellular laccase, indicating that this enzyme may be associated with the decolouration capacity. The dyes showed toxic effects in fishes at 0.01 g mL-1 concentration, resulting in the appearance of micronuclei in erythrocyte cells. When degraded dyes treated by endophytes were tested, the frequency of micronuclei reduced approximately 20%, indicating the effectiveness of these endophytic in the treatment of textile dyes with less environmental impact, thus indicating a potential for application of these fungi in bioremediation process.


Subject(s)
Basidiomycota/metabolism , Biodegradation, Environmental , Coloring Agents/metabolism , Environmental Monitoring , Paecilomyces/metabolism , Animals , Anthraquinones/adverse effects , Anthraquinones/metabolism , Coloring Agents/adverse effects , Endophytes/metabolism , Erythrocytes/drug effects , Fishes , Fungal Proteins/metabolism , Laccase/metabolism , Micronucleus Tests/veterinary , Naphthalenesulfonates/adverse effects , Naphthalenesulfonates/metabolism , Textile Industry , Waste Disposal, Fluid
10.
Microbiol Res ; 192: 142-147, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27664732

ABSTRACT

Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.


Subject(s)
Agrobacterium tumefaciens/physiology , Ascomycota/physiology , Gene Expression Regulation, Fungal , Microbial Interactions , Mutation , Reproduction, Asexual/genetics , Transformation, Genetic , Citrus/microbiology , DNA, Bacterial , Gene Order , Genes, Reporter , Mutagenesis, Insertional , Plant Diseases/microbiology
11.
Microbiol Res ; 186-187: 153-60, 2016.
Article in English | MEDLINE | ID: mdl-27242153

ABSTRACT

The citrus industry is severely affected by citrus black spot (CBS), a disease caused by the pathogen Phyllosticta citricarpa. This disease causes loss of production, decrease in the market price of the fruit, and reduction in its export to the European Union. Currently, CBS disease is being treated in orchards with various pesticides and fungicides every year. One alternative to CBS disease control without harming the environment is the use of microorganisms for biological control. Diaporthe endophytica and D. terebinthifolii, isolated from the medicinal plants Maytenus ilicifolia and Schinus terebinthifolius have an inhibitory effect against P. citricarpa in vitro and in detached fruits. Moreover, D. endophytica and D. terebinthifolii were transformed by Agrobacterium tumefaciens for in vivo studies. The transformants retained the ability to control of phytopathogenic fungus P. citricarpa after transformation process. Furthermore, D. endophytica and D. terebinthifolii were able to infect and colonize citrus plants, which is confirmed by reisolation of transformants from inoculated and uninoculated leaves. Light microscopic analysis showed fungus mycelium colonizing intercellular region and oil glands of citrus, suggesting that these two new species are capable of colonizing citrus plants, in addition to controlling the pathogen P. citricarpa.


Subject(s)
Antibiosis , Ascomycota/growth & development , Ascomycota/isolation & purification , Citrus/microbiology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Plants, Medicinal/microbiology , Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Endophytes/growth & development , Endophytes/isolation & purification , Plant Diseases/microbiology , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...