Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 235: 119877, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36989800

ABSTRACT

Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.


Subject(s)
Nitrates , Water Purification , Hydrogen , Palladium , Water Purification/methods , Catalysis
2.
J Nucl Med ; 60(5): 702-709, 2019 05.
Article in English | MEDLINE | ID: mdl-30291195

ABSTRACT

The use of Cerenkov radiation to activate nanoparticles in situ was recently shown to control cancerous tumor growth. Although the methodology has been demonstrated to work, to better understand the mechanistic steps, we developed a mathematic model that integrates Cerenkov physics, light interaction with matter, and photocatalytic reaction engineering. Methods: The model describes a detailed pathway for localized reactive oxygen species (ROS) generation from the Cerenkov radiation-assisted photocatalytic activity of TiO2 The model predictions were verified by comparison to experimental reports in the literature. The model was then used to investigate the effects of various parameters-the size of TiO2 nanoparticles, the concentration of TiO2 nanoparticles, and the activity of the radionuclide 18F-FDG-on the number of photons and ROS generation. Results: The importance of nanoparticle size in ROS generation for cancerous tumor growth control was elucidated, and an optimal size was proposed. Conclusion: The model described here can be used for other radionuclides and nanoparticles and can provide guidance on the concentration and size of TiO2 nanoparticles and the radionuclide activity needed for efficient cancer therapy.


Subject(s)
Nanoparticles , Neoplasms/radiotherapy , Photochemical Processes , Reactive Oxygen Species/metabolism , Titanium/chemistry , Titanium/therapeutic use , Catalysis , Particle Size
3.
ACS Appl Mater Interfaces ; 10(35): 29972-29981, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30086231

ABSTRACT

We demonstrated room-temperature gas sensing of volatile organic compounds (VOCs) using SnO2 nanostructured thin films grown via the aerosol chemical vapor deposition process at deposition temperatures ranging from 450 to 600 °C. We investigated the film's sensing response to the presence of three classes of VOCs: apolar, monopolar, and biopolar. The synthesis process was optimized, with the most robust response observed for films grown at 550 °C as compared to other temperatures. The role of film morphology, exposed surface planes, and oxygen defects were explored using experimental techniques and theoretical calculations to improve the understanding of the room-temperature gas sensing mechanism, which is proposed to be through the direct adsorption of VOCs on the sensor surface. Overall, the improved understanding of the material characteristics that enable room-temperature sensing gained in this work will be beneficial for the design and application of metal oxide gas sensors at room temperature.

4.
J Photochem Photobiol B ; 185: 161-168, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29936409

ABSTRACT

The unique properties of chlorosomes, arising out of the self-assembled bateriochlorophyll (BChl) c structure, have made them attractive for use in solar cells. In this work, we have demonstrated the self-assembly of BChl c in aerosolized droplets to mimic naturally occurring chlorosomes. We compare two different methods for self-assembly of BChl c, one using a single-solvent and the other using two-solvents, and demonstrate the superiority of the two-solvent method. Results show that the self-assembled BChl c sprayed at different concentrations resulted in a varying red shift of 69-75 nm in absorption spectrum compared to the solution, which has peak at 668 nm corresponding to the monomeric BChl c. The sample fluoresces at 780 nm indicating a quality of self-assembly comparable to that observed in naturally occurring chlorosomes. In order to mimic chlorosomes, solution containing BChl c, BChl a, lipids and carotenes in same proportion as in chlorosomes is sprayed. The resulting self-assembly has an absorption peak at 750 nm, shifted by 82 nm compared to that of monomers and the fluorescence peak at 790 nm. Thus in presence of lipids and carotenes, both the absorption and fluorescence peaks are red shifted. Further, using grazing incidence small angle X-ray scattering (GISAXS), we characterized the deposited films, and the 2D X-ray scattering patterns of sample clearly indicate the distinct lamellar structure as present in chlorosomes. The results of this work provide new insights into self-assembly in aerosolized droplets, which can be used for assembling a wide range of molecules.


Subject(s)
Bacterial Proteins/biosynthesis , Bacteriochlorophylls/metabolism , Biomimetics , Lipid Droplets/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacteriochlorophylls/chemistry , Carotenoids/chemistry , Chlorobi/metabolism , Scattering, Small Angle , Solvents/chemistry , Spectrometry, Fluorescence , X-Ray Diffraction
5.
Nanoscale ; 8(4): 1868-72, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26731449

ABSTRACT

The thylakoid membrane mainly consists of photosystem I (PSI), photosystem II (PSII) and the cytochrome b6f embedded in a lipid bilayer. PSI and PSII have the ability to capture sunlight and create an electron-hole pair. The study aims at utilizing these properties by using the thylakoid membrane to construct a photo-electrochemical cell. A controlled aerosol technique, electrohydrodynamic atomization, allows a systematic study by the fabrication of different cell configurations based on the surfactant concentration without any linker, sacrificial electron donor and mediator. The maximum photocurrent density observed is 6.7 mA cm(-2) under UV and visible light, and 12 µA cm(-2) under visible light illumination. The electron transfer occurs from PSII to PSI via cytochrome b6f and the electron at PSII is regenerated by water oxidation, similar to the z-scheme of photosynthesis. This work shows that re-engineering the natural photosynthesis circuit by the novel technique of electrospray deposition can result in an environmentally friendly method of harvesting sunlight.


Subject(s)
Electricity , Nanostructures/chemistry , Photochemical Processes , Thylakoids/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL