Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 54(10): 1673-81, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18719199

ABSTRACT

BACKGROUND: Macroprolactin is an important source of immunoassay interference that commonly leads to misdiagnosis and mismanagement of hyperprolactinemic patients. We used the predominant immunoassay platforms for prolactin to assay serum samples treated with polyethylene glycol (PEG) and establish and validate reference intervals for total and monomeric prolactin. METHODS: We used the Architect (Abbott), ADVIA Centaur and Immulite (Siemens Diagnostics), Access (Beckman Coulter), Elecsys (Roche Diagnostics), and AIA (Tosoh) analyzers with samples from healthy males (n = 53) and females (n = 93) to derive parametric reference intervals for total and post-PEG monomeric prolactin. Concentrations of immunoreactive prolactin isoforms in serum samples from healthy individuals were established by gel filtration chromatography (GFC). We then used samples from 22 individuals whose hyperprolactinemia was entirely attributable to macroprolactin and 32 patients with true hyperprolactinemia to compare patient classifications and prolactin concentrations measured by GFC with the newly derived post-PEG reference intervals. RESULTS: Parametric reference intervals for post-PEG prolactin in male and female serum samples, respectively, were (in mIU/L): 61-196, 66-278 (Centaur); 63-245, 75-381 (Elecsys); 70-301, 92-469 (Access); 72-229, 79-347 (Architect); 73-247, 83-383 (AIA); and 78-263, 85-394 (Immulite). Concordance between GFC and immunoassay-specific post-PEG reference intervals was observed in 311 of 324 cases and for 31 of 32 patients with true hyperprolactinemia and 17 of 22 patients with macroprolactinemia. Results leading to misclassification occurred in a few analyzers for 5 macroprolactinemia patient samples with relatively minor increases in post-PEG prolactin (mean 61 mIU/L). CONCLUSIONS: Our validated normative reference data for sera pretreated with PEG and analyzed on the most commonly used immunoassay platforms should facilitate the more widespread introduction of macroprolactin screening by clinical laboratories.


Subject(s)
Immunoassay/methods , Polyethylene Glycols/chemistry , Prolactin/blood , Chemical Precipitation , Chromatography, Gel , Female , Humans , Male , Prolactin/standards , Reference Values
2.
Nat Clin Pract Endocrinol Metab ; 3(3): 279-89, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17315036

ABSTRACT

Measurement of prolactin is one of the most commonly undertaken hormonal investigations in evaluating patients with reproductive disorders. Hyperprolactinemia is found in up to 17% of such cases. Diagnostic evaluation of hyperprolactinemia is difficult but is facilitated by a logical approach where a thorough patient history is obtained, secondary causes of hyperprolactinemia are excluded, and the limitations of current prolactin assays are appreciated. Once hyperprolactinemia has been confirmed, attempts to establish the underlying cause can start. Given current workloads, laboratories rely on automated platforms to measure prolactin, most of which employ two-site immunoassay sandwich methods. Although generally robust and reliable, such immunoassays are susceptible to interference, and good collaboration between clinicians and the laboratory helps to minimize problems. A major challenge facing laboratories is correct differentiation of patients with true hyperprolactinemia from those with macroprolactinemia. Macroprolactin is a high-molecular-mass, biologically inactive form of prolactin that is detected to varying degrees by all prolactin immunoassays. Conservative estimates suggest that the presence of macroprolactin leads to misdiagnosis in as many as 10% of all reported instances of biochemical hyperprolactinemia. In the absence of specific testing, macroprolactin represents a diagnostic pitfall that results in the misdiagnosis and mismanagement of large numbers of patients.


Subject(s)
Diagnostic Techniques, Endocrine , Prolactin/analysis , Diagnostic Errors , Humans , Hyperprolactinemia/diagnosis , Hyperprolactinemia/etiology , Hyperprolactinemia/therapy , Models, Biological
3.
Clin Chem ; 52(7): 1366-72, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16675508

ABSTRACT

BACKGROUND: Increased serum concentrations of macroprolactin are a relatively common cause of misdiagnosis and mismanagement of hyperprolactinemic patients. METHODS: We studied sera from a cohort of 42 patients whose biochemical hyperprolactinemia was explained entirely by macroprolactin. Using 5 pretreatments, polyethylene glycol (PEG), protein A (PA), protein G (PG), anti-human IgG (anti-hIgG), and ultrafiltration (UF), to deplete macroprolactin from sera before immunoassay, we compared residual prolactin concentrations with monomer concentrations obtained by gel-filtration chromatography (GFC). A monomeric prolactin standard was used to assess recovery and specificity of the pretreatment procedures. RESULTS: Residual prolactin concentrations in all pretreated sera differed significantly (P < 0.001) from monomeric concentrations obtained after GFC. PEG underestimated (mean, 75%), whereas PA, PG, anti-hIgG, and UF overestimated (means, 178%, 151%, 178%, and 112%, respectively) the amount of monomer present. Of the 5 methods examined, PEG correlated best with GFC (r = 0.80) followed by PG (r = 0.78), PA (r = 0.72), anti-hIgG (r = 0.70), and UF (r = 0.61). After UF or pretreatment with anti-hIgG or PEG, recovery of monomeric prolactin standard was low: 60%, 85%, and 77% respectively. In contrast, pretreatment with PA or PG gave almost quantitative recovery. CONCLUSIONS: None of the methods examined yielded results identical to the GFC method. PEG pretreatment yielded results that correlated best and is recommended as the first-choice alternative to GFC.


Subject(s)
Prolactin/blood , Chromatography, Gel/economics , Clinical Chemistry Tests , Costs and Cost Analysis , Humans , Immunoassay/economics , Prolactin/standards , Reference Standards , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...