Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403218, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963069

ABSTRACT

In recent years, the implementation of energy-harvesting technology in medical equipment has attracted significant interest owing to its potential for self-powered and smart healthcare systems. Herein, the integration of a triboelectric nanogenerator (TENG) is proposed into an inhaler for energy-harvesting and smart inhalation monitoring. For this initially, barium sodium niobium oxide (Ba2NaNb5O15) microparticles (BNNO MPs) are synthesized via a facile solid-state synthesis process. The BNNO MPs with ferroelectricity and high dielectric constant are incorporated into polydimethylsiloxane (PDMS) polymer to make BNNO/PDMS composite films (CFs) for TENG fabrication. The fabricated TENG is operated in a contact-separation mode, and its electrical output performance is compared to establish the optimal BNNO MPs concentration. Furthermore, multi-wall carbon nanotubes (MWCNTs), a conductive filler material, are used to enhance the electrical conductivity of the CFs, thereby improving the electrical output performance of the TENG. The robustness/durability of the proposed BNNO-MWCNTs/PDMS CF-based TENG are investigated. The proposed TENG device is demonstrated to harvest electrical energy from mechanical motions via regular human activities and power portable electronics. The TENG is integrated into the inhaler casing to count the number of sprays remaining in the canister, send the notification to a smartphone via Bluetooth, and harvest energy.

2.
Nanomicro Lett ; 16(1): 112, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334816

ABSTRACT

The undesirable dendrite growth induced by non-planar zinc (Zn) deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries (ZMBs). Herein, we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium (Zn-In) interface in the microchannels. The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities. Meanwhile, electron aggregation accelerates the dissolution of non-(002) plane Zn atoms on the array surface, thereby directing the subsequent homoepitaxial Zn deposition on the array surface. Consequently, the planar dendrite-free Zn deposition and long-term cycling stability are achieved (5,050 h at 10.0 mA cm-2 and 27,000 cycles at 20.0 mA cm-2). Furthermore, a Zn/I2 full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C, demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...