Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Sci Rep ; 14(1): 2198, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272996

ABSTRACT

Phenols, and especially their nitrated analogues, are ubiquitous pollutants and known carcinogens which have already been linked to forest decline. Although nitrophenols have been widely recognized as harmful to different aquatic and terrestrial organisms, we could not find any literature assessing their toxicity to terrestrial plants. Maize (monocot) and sunflower (dicot) were exposed to phenolic pollutants, guaiacol (GUA) and 4-nitroguaiacol (4NG), through a hydroponics system under controlled conditions in a growth chamber. Their acute physiological response was studied during a two-week root exposure to different concentrations of xenobiotics (0.1, 1.0, and 10 mM). The exposure visibly affected plant growth and the effect increased with increasing xenobiotic concentration. In general, 4NG affected plants more than GUA. Moreover, sunflower exhibited an adaptive response, especially to low and moderate GUA concentrations. The integrity of both plant species deteriorated during the exposure: biomass and photochemical pigment content were significantly reduced, which reflected in the poorer photochemical efficiency of photosystem II. Our results imply that 4NG is taken up by sunflower plants, where it could enter a lignin biosynthesis pathway.


Subject(s)
Environmental Pollutants , Environmental Pollutants/metabolism , Guaiacol/chemistry , Plants/metabolism
3.
Environ Sci Pollut Res Int ; 27(19): 23402-23410, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31119536

ABSTRACT

Halophytes are able to tolerate relatively high concentrations of hazardous metals in a growing substrate, what makes them suitable candidates for phytoremediation of metal-contaminated soils. In this work, we aimed to study the physiological responses of the halophyte Sesuvium portulacastrum L. to Ni, with main focus on Ni localization, compartmentation and ligand environment, to decipher Ni tolerance and toxicity mechanisms. Seedlings were grown in hydroponic nutrient solution containing 0, 25, 50 and 100 µM Ni as NiCl2 for 3 weeks. Ni localization in leaves was assessed by micro-proton-induced X-ray emission (micro-PIXE). Ni ligand environment was studied by Ni K-edge X-ray absorption near edge structure (XANES). In addition, Ni-soluble, weakly bound/exchangeable and insoluble leaf tissue fractions were determined by sequential extraction. Results show that S. portulacastrum is able to tolerate up to ~ 500 µg g-1 dry weight (DW) of Ni in the shoots without significant growth reduction. At higher Ni concentrations (> 50 µM Ni in nutrient solution), chloroses were observed due to the accumulation of Ni in photosynthetically active chlorenchyma as revealed by micro-PIXE. Water storage tissue represented the main pool for Ni storage. Incorporation of Ni into Ca-oxalate crystals was also observed in some specimens, conferring tolerance to high leaf Ni concentrations. The majority of Ni (> 70%) was found in soluble tissue fraction. Ni K XANES revealed Ni bound mainly to O- (55%) and N-ligands (45%). Ni toxicity at higher Ni levels was associated with Ni binding to amino groups of proteins in cytosol of chlorenchyma and increased level of lipid peroxidation. Proline levels also increased at high Ni exposures and were associated with Ni-induced oxidative stress and alteration of water regime.


Subject(s)
Aizoaceae , Salt-Tolerant Plants , Biodegradation, Environmental , Ligands , Nickel
4.
J Hazard Mater ; 384: 121201, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31586917

ABSTRACT

The broad use of silver nanoparticles (AgNPs) in daily life products enhances their possibilities to reach the environment. Therefore, it is important to understand the uptake, translocation and biotransformation in plants and the toxicological impacts derived from these biological processes. In this work, Lactuca sativa (lettuce) was exposed during 9 days to different coated (citrate, polyvinylpyrrolidone, polyethylene glycol) and sized (60, 75, 100 nm) AgNPs at different concentrations (1, 3, 5, 7, 10, 15 mg L-1). Total silver measurements in lettuce roots indicated that accumulation of AgNPs is influenced by size and concentration, but not by nanoparticle coating. On the other hand, nanosilver translocation to shoots was more pronounced for neutral charged and large sized NPs at higher NP concentrations. Single particle inductively coupled plasma mass spectrometry analysis, after an enzymatic digestion of lettuce tissues indicated the dissolution of some NPs. Ag K-edge X-ray absorption spectroscopy analysis corroborated the AgNPs dissolution due to the presence of less Ag-Ag bonds and appearance of Ag-O and/or Ag-S bonds in lettuce roots. Toxicological effects on lettuces were observed after exposure to nanosilver, especially for transpiration and stomatal conductance. These findings indicated that AgNPs can enter to edible plants, exerting toxicological effects on them.


Subject(s)
Lactuca/drug effects , Lactuca/metabolism , Metal Nanoparticles/toxicity , Silver/toxicity , Biological Transport , Carotenoids/metabolism , Chlorophyll/metabolism , Ligands , Metal Nanoparticles/chemistry , Particle Size , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Silver/chemistry , Surface Properties
5.
Food Chem Toxicol ; 135: 110939, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31697969

ABSTRACT

The effects of foliar Se biofortification (Se+) of the lettuce on the transfer and toxicity of Hg from soil contaminated with HgCl2 (H) and soil collected near the former Hg smelter in Idrija (I), to terrestrial food chain are explored, with Spanish slug as a primary consumer. Foliar application of Se significantly increased Se content in the lettuce, with no detected toxic effects. Mercury exerted toxic effects on plants, decreasing plant biomass, photochemical efficiency of the photosystem II (Fv/Fm) and the total chlorophyll content. Selenium biofortification (Se+ test group) had no effect on Hg bioaccumulation in plants. In slugs, different responses were observed in H and I groups; the I/Se+ subgroup was the most strongly affected by Hg toxicity, exhibiting lower biomass, feeding and growth rate and a higher hepatopancreas/ muscle Hg translocation, pointing to a higher Hg mobility in comparison to H group. Selenium increased Hg bioavailability for slugs, but with opposite physiological responses: alleviating stress in H/Se+ and inducing it in I/Se+ group, indicating different mechanisms of Hg-Se interactions in the food chain under HgCl2 and Idrija soil exposures that can be mainly attributed to different Hg speciation and ligand environment in the soil.


Subject(s)
Biofortification/methods , Food Chain , Gastropoda/metabolism , Lactuca/metabolism , Mercury/toxicity , Selenium/pharmacology , Animals , Bioaccumulation , Biological Availability , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Mercuric Chloride/pharmacokinetics , Mercuric Chloride/toxicity , Mercury/pharmacokinetics , Soil/chemistry
6.
Ecotoxicol Environ Saf ; 184: 109623, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31518823

ABSTRACT

This study provides information on mercury (Hg) localization, speciation and ligand environment in edible mushrooms: Boletus edulis, B. aereus and Scutiger pes-caprae collected at non-polluted and Hg polluted sites, by LA-ICP-MS, SR-µ-XRF and Hg L3-edge XANES and EXAFS. Mushrooms (especially young ones) collected at Hg polluted sites can contain more than 100 µg Hg g-1 of dry mass. Imaging of the element distribution shows that Hg accumulates mainly in the spore-forming part (hymenium) of the cap. Removal of hymenium before consumption can eliminate more than 50% of accumulated Hg. Mercury is mainly coordinated to di-thiols (43-82%), followed by di-selenols (13-35%) and tetra-thiols (12-20%). Mercury bioavailability, as determined by feeding the mushrooms to Spanish slugs (known metal bioindicators owing to accumulation of metals in their digestive gland), ranged from 4% (S. pes-caprae) to 30% (B. aereus), and decreased with increasing selenium (Se) levels in the mushrooms. Elevated Hg levels in mushrooms fed to the slugs induced toxic effects, but these effects were counteracted with increasing Se concentrations in the mushrooms, pointing to a protective role of Se against Hg toxicity through HgSe complexation. Nevertheless, consumption of the studied mushroom species from Hg polluted sites should be avoided.


Subject(s)
Agaricales/chemistry , Food Contamination/analysis , Mercury Compounds/analysis , Soil Pollutants/analysis , Agaricales/metabolism , Animals , Biological Availability , Environmental Monitoring , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Gastropoda/metabolism , Mercury Compounds/metabolism , Mercury Compounds/toxicity , Selenium/analysis , Soil Pollutants/metabolism , Soil Pollutants/toxicity
7.
Front Plant Sci ; 10: 907, 2019.
Article in English | MEDLINE | ID: mdl-31354774

ABSTRACT

One third of people suffer from anemia, with iron (Fe) deficiency being the most common reason. The human diet includes seeds of staple crops, which contain Fe that is poorly bioavailable. One reason for low bioavailability is that these seeds store Fe in cellular compartments that also contain antinutrients, such as phytate. Thus, several studies have focused on decreasing phytate concentrations. In theory, as an alternative approach, Fe reserves might be directed to cellular compartments that are free of phytate, such as plastids. However, it is not known if seed plastid can represent a major Fe storage compartment in nature. To discover distinct types of Fe storage in nature, we investigated metal localizations in the seeds of more than twenty species using histochemical or X-ray based techniques. Results showed that in Rosids, the largest clade of eudicots, Fe reserves were primarily confined to the embryo of the seeds. Furthermore, inside the embryos, Fe accumulated specifically in the endodermal cell layer, a well-known feature that is mediated by VACUOLAR IRON TRANSPORTER1 (VIT1) in model plant Arabidopsis thaliana. In rice, Fe enrichment is lost around the provasculature in the mutants of VIT1 orthologs. Finally, in Carica papaya, Fe accumulated in numerous organelles resembling plastids; however, these organelles accumulated reserve proteins but not ferritin, failing to prove to be plastids. By investigating Fe distribution in distinct plant lineages, this study failed to discover distinct Fe storage patterns that can be useful for biofortification. However, it revealed Fe enrichment is widely conserved in the endodermal cell layer in a VIT1-dependent manner in the plant kingdom.

8.
J Am Soc Mass Spectrom ; 30(9): 1801-1812, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31250317

ABSTRACT

MeV-SIMS is an emerging mass spectrometry imaging method, which utilizes fast, heavy ions to desorb secondary molecules. High yields and low fragmentation rates of large molecules, associated with the electronic sputtering process, make it particularly useful in biomedical research, where insight into distribution of organic molecules is needed. Since the implementation of MeV-SIMS in to the micro-beam line at the tandem accelerator of Jozef Stefan Institute, MeV-SIMS provided some valuable observations on the distribution of biomolecules in plant tissue, as discussed by Jencic et al. (Nucl. Inst. Methods Phys. Res. B. 371, 205-210, 2016; Nucl. Inst. Methods Phys. Res. B. 404, 140-145, 2017). However, limited focusing ability of the chlorine ion beam only allowed imaging at the tissue level. In order to surpass shortcomings of the existing method, we introduced a new approach, where we employ a continuous, low-current primary beam. In this mode, we bombard thin samples with a steady chlorine ion flux of approx. 5000 ions/s. After desorbing molecules, chlorine ions penetrate through the thinly cut sample and trigger the time-of-flight "start" signal on a continuous electron multiplier detector, positioned behind the sample. Such bombardment is more effective than previously used pulsing-beam mode, which demanded several orders of magnitude higher primary ion beam currents. Sub-micrometer focusing of low-current primary ion beam allows imaging of biological tissue on a subcellular scale. Simultaneously, new time-of-flight acquisition approach also improves mass resolution by a factor of 5. Within the article, we compare the performance of both methods and demonstrate the application of continuous mode on biological tissue. We also describe the thin sample preparation protocol, necessary for measurements with low primary ion currents.


Subject(s)
Image Processing, Computer-Assisted/methods , Spectrometry, Mass, Secondary Ion/instrumentation , Spectrometry, Mass, Secondary Ion/methods , Amino Acids/analysis , Amino Acids/chemistry , Equipment Design , Humans , Hydrogen/analysis , Hydrogen/chemistry , Liver/chemistry , Liver/diagnostic imaging , Poisson Distribution , Seeds/chemistry , Zea mays/chemistry
9.
Chemosphere ; 219: 463-471, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30551113

ABSTRACT

Sesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant. Seedlings obtained by in vitro micro-propagation, were exposed to 0, 25 and 50 µM Ni, as NiCl2, in agar-based medium for 30 days. Growth parameters, plant water content, the concentration of photosynthetic pigments, proline and malondialdehyde (MDA) concentrations were determined. Nickel and nutrients distribution in leaves was studied by micro-Proton-Induced-X-ray-Emission (µ-PIXE). The results showed that Ni was mainly accumulated in vascular bundles, next in water storage tissues and chlorenchyma. Ni concentrations in chlorenchyma increased with increasing Ni in culturing medium, in direct relation to decrease of photosynthetic pigments and increase of oxidative stress. As compared to control plants, Ni induced substantial increase in MDA and proline accumulation. Plants exposed to 50 µM Ni accumulated up to 650 µg g-1 of Ni in the shoots, exhibiting chlorosis and necrosis and a drastically reduced plant growth. Perturbations in uptake and distribution of nutrients were observed, inducing mineral deficiency, probably through membrane leakage. The mineral nutrient disturbances induced by Ni could be highly implicated in the restriction of S. portulacastrum development under the acute 50 µM Ni level.


Subject(s)
Adaptation, Physiological , Aizoaceae/drug effects , Nickel/pharmacology , Seedlings/drug effects , Aizoaceae/growth & development , Aizoaceae/metabolism , Biodegradation, Environmental , Minerals/metabolism , Nickel/pharmacokinetics , Photosynthesis , Plant Leaves , Salt-Tolerant Plants , Soil Pollutants/pharmacology , Tissue Distribution
10.
Metallomics ; 10(11): 1576-1584, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30183791

ABSTRACT

Cadmium (Cd) was shown to co-localise with calcium (Ca) in oxalate crystals in the stems and leaves of Cd tolerant Gomphrena claussenii, but Cd binding remained unresolved. Using synchrotron radiation X-ray absorption near edge spectroscopy we demonstrate that in oxalate crystals of hydroponically grown G. claussenii the vast majority of Cd is bound to oxygen ligands in oxalate crystals (>88%; Cd-O-C coordination) and the remaining Cd is bound to sulphur ligands (Cd-S-C coordination). Cadmium binding to oxalate does not depend on the amount of Ca supplied or from which organs the crystals originate (stems and mature leaves). By contrast, roots contain no oxalate crystals and therein Cd is bound predominantly by S ligands. The potential to remove Cd by extraction of Cd-rich oxalate crystals from plant material should be tested in phytoextraction or phytomining strategies.


Subject(s)
Amaranthaceae/metabolism , Biomarkers/metabolism , Cadmium/metabolism , Calcium Oxalate/metabolism , Calcium/metabolism , Oxalates/metabolism , Plant Stems/metabolism , Amaranthaceae/growth & development , Plant Stems/growth & development
11.
Environ Sci Technol ; 52(14): 7640-7651, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29894629

ABSTRACT

Nano zero-valent iron (nZVI) has great potential in the remediation of metal(loid)-contaminated soils, but its efficiency in metal(loid) stabilization in the plant-microbe continuum is unclear. This study investigated nZVI-mediated metal(loid) behavior in the arbuscular mycorrhizal (AM) fungal-maize ( Zea mays L.) plant association. Plants with AM fungal inoculation were grown in metal(loid)- (mainly Zn and Pb) contaminated soils (Litavka River, Czech Republic) amended with/without 0.5% (w/w) nZVI. The results showed that nZVI decreased plant metal(loid) uptake but inhibited AM development and its function in metal(loid) stabilization in the rhizosphere. AM fungal inoculation alleviated the physiological stresses caused by nZVI and restrained nZVI efficiency in reducing plant metal(loid) uptake. Micro proton-induced X-ray emission (µ-PIXE) analysis revealed the sequestration of Zn (possibly through binding to thiols) by fungal structures in the roots and the precipitation of Pb and Cu in the mycorrhizal root rhizodermis (possibly by Fe compounds originated from nZVI). XRD analyses further indicated that Pb/Fe mineral transformations in the rhizosphere were influenced by AM and nZVI treatments. The study revealed the counteractive effects of AM and nZVI on plant metal(loid) uptake and uncovered details of metal(loid) behavior in the AM fungal-root-nZVI system, calling into question about nZVI implementation in mycorrhizospheric systems.


Subject(s)
Metals, Heavy , Mycorrhizae , Soil Pollutants , Czech Republic , Iron , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL
...