Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 286(Pt 3): 131899, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34426292

ABSTRACT

Characterizing the distribution of biota in response to contaminants is a critical element of site risk assessments. In this study we investigated the spatial distributions of biota and soil chemistry data in surface soil from Sunny Corner, a legacy base metal sulfide mine, Australia. Our results showed that copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) in the surface soil exceeded Australian national soil quality guidelines and posed risks to the environment. Environmental (e)DNA metabarcoding of prokaryote and eukaryote composition confirmed the suggestion of environmental risk posed by these elements collectively explaining 72.9 % and 60.5 % of the total variation in the composition of soil prokaryotes and eukaryotes, respectively. Prokaryotic taxa from the phyla Gemmatimonadetes, Verrucomicrobia and Deinococcus-Thermus showed similar spatial patterns to As and Pb, and were positively correlated. Eukaryotic taxa from the phylum Chlorophyta had similar positive correlations with As and Pb in the soil. In contrast, Amoebozoa and Cercozoa, were sensitive to metals and metalloids, having higher relative abundances in soils with lower concentrations of contaminants. Our study shows that metabarcoding is a promising ecological approach for rapid, large scale assessment of contaminated and potentially impacted sites.


Subject(s)
DNA, Environmental , Metals, Heavy , Soil Pollutants , Australia , Biota , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
2.
J Hazard Mater ; 419: 126483, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34216969

ABSTRACT

Mining and processing metalliferous ores can degrade the environment well beyond the footprint of the mine, particularly where on-site containment and post-mining remediation has been insufficient to prevent releases of solid and aqueous mine wastes. In this study, we investigated the potential of sediment and water chemistry coupled with environmental (e)DNA metabarcoding to evaluate discrete and cumulative ecological impacts of two legacy base metal (copper (Cu), zinc (Zn), lead (Pb)) mines (Peelwood and Cordillera) which discharge metals via ephemeral tributaries into perennial Peelwood Creek. Although the two mine streams exceeded Australian guidelines for sediment and freshwater quality for Cu, Zn and Pb, Peelwood Creek had relatively low sediment and water metal concentrations, suggesting a low potential for environmental toxicity. Although sediment and water chemistry defined the extent of biological impacts, metabarcoding showed that Peelwood and Cordillera mines had discrete impacts and Peelwood mine was the main source of contamination of Peelwood Creek. Metabarcoding showed that prokaryotes can be good indicators of metal contamination whereas eukaryotes did not reflect contamination impacts in Peelwood Creek. Metabarcoding results showed that benthic communities downstream of Cordillera mine were less impacted than those below Peelwood mine, suggesting that Peelwood mine should be considered for further remediation.


Subject(s)
DNA, Environmental , Metals, Heavy , Water Pollutants, Chemical , Australia , Environmental Monitoring , Metals, Heavy/analysis , Metals, Heavy/toxicity , Mining , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
J Hazard Mater ; 416: 125794, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33862483

ABSTRACT

Acid Rock Drainage (ARD) from legacy mines can negatively impact the biota in sediments and waters for tens of kilometers downstream. Here we used environmental (e)DNA metabarcoding to assess the impacts of metal contaminants on biota in sediment and water downstream of a legacy base metal sulfide mine in southeastern Australia, as exemplar of similar mines elsewhere. Concentrations of metals in water were below Australian water quality guideline values at 20 km downstream for copper (Cu), 40 km downstream for zinc (Zn) and 10 km downstream for lead (Pb). Sediment metal concentrations were below national guideline concentrations at 10 km downstream for Cu, 60 km downstream for Zn and 20 km downstream for Pb. In contrast, metabarcoding showed that biological communities from sediment samples at 10 km and 20 km downstream were similar to sites close to the mine and thus indicative of being impacted, despite metal concentrations being relatively low. As we illustrate, when combined with sediment and water chemistry, metabarcoding can provide more ecological robust perspective on the downstream effects of legacy mines, capturing the sensitivities of a diverse range of organisms.


Subject(s)
DNA, Environmental , Metals, Heavy , Water Pollutants, Chemical , Australia , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Environ Pollut ; 274: 116537, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33529902

ABSTRACT

Most legacy mines contributed to contamination of the environment before and after cessation of mining. Contamination from waste rock, slag and tailings can introduce large concentrations of metals and metalloids to the surface soil and downstream sediments. Since ants are able to accumulate metals in their bodies, we investigated the possibility of using the elemental compositions of ants as indicators of metals at legacy mines developed on ores rich in copper (Cu), zinc (Zn), arsenic (As), silver (Ag) and lead (Pb). Our results showed the concentrations of manganese (Mn) and Cu in ants were not significantly different between mine and reference samples and only Zn was significantly different between contaminated and reference areas. Crematogaster spp. and Notoncus spp. from reference areas accumulated larger concentrations of metals in their bodies compared to ants from the mine. Ants accumulated metals in different parts of their bodies. The abdomen was the main site for accumulation of Mn, iron (Fe) and Zn. Mandibles were only associated with accumulation of Zn. Copper and Pb showed no area of preferential accumulation and traces were detected in the whole body of the ants. Ants from five genera had similar regions for metal accumulation. The exoskeleton did not contribute to accumulation of metals; instead all metals were stored in internal organs. Not all genera were suitable for use as indicators; only Iridomyrmex spp. and Ochetellus spp. accumulated larger amount of metals in mine samples compared to reference samples.


Subject(s)
Ants , Metals, Heavy , Soil Pollutants , Animals , Environmental Monitoring , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis
5.
Environ Pollut ; 273: 115742, 2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33545618

ABSTRACT

Environmental impacts associated with mining can be important even after cessation of ore extraction, particularly where sites are abandoned and unremediated. Acid Mine Drainage (AMD) is a common concern in such legacy mines where sulfide ores were extracted. AMD can introduce large concentrations of heavy metals to aquatic systems and contaminate the environment for many kilometres downstream of old mines. Understanding the pattern and history of contamination from legacy mines can help environmental managers make better management decisions. Meta-analysis is a statistical tool that can help determine the significance of changes in metal contamination over the years since cessation of mining. Here we use meta-analysis to examine metal contamination at and downstream of Sunny Corner silver (Ag)-lead (Pb)-zinc (Zn) mine in eastern Australia. Copper (Cu), Zn and Pb concentrations in water increased from 1978 to 2018 within 2 km downstream of the main mine adit, whereas for stream sediment, only Zn concentrations increased significantly over the same period. In contrast, Pb concentrations in surface soil decreased over the years from 2000 to 2018.

6.
Environ Pollut ; 237: 851-857, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29150255

ABSTRACT

Contamination of soils by metals and metalloids is an important environmental problem in many residential and industrial sites around the world. Lead is a common contaminant, which enters the soil through mining, industrial activities and waste disposal. A range of technologies can be used to remediate soil lead, however most remediation technologies adversely affect the environment and particularly soil biota. We have assessed the efficacy of vermiremediation (the use of earthworms for remediation) to reduce water extractable lead concentrations in soil. Earthworms were introduced to a sandy soil spiked with the common lead minerals cotunnite (PbCl2), cerussite (PbCO3), massicot (PbO) or galena (PbS) at 1000 mg (Pb) kg-1. Lead concentrations in pore water extracted during the experiment were not significantly different in contaminated soil with and without worms. However, concentrations of lead in water from a deionised water extraction (washing) of contaminated soil were significantly lower in soil with earthworms than in soil without. Earthworms accumulated on average (±1 standard deviation) 276 ± 118, 235 ± 66, 241 ± 58 and 40 ± 30 mg kg-1 (dry weight of earthworms) of lead in their bodies, in PbCl2, PbCO3, PbO and PbS-dosed soils, respectively. During the experiment, earthworms lost weight in all contaminated soils, except those containing PbS.


Subject(s)
Lead/toxicity , Oligochaeta/physiology , Soil Pollutants/toxicity , Animals , Biota , Carbonates/toxicity , Metalloids , Minerals , Oligochaeta/drug effects , Soil , Soil Pollutants/analysis , Sulfides/toxicity , Toxicity Tests , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...