Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(36): 25281-4, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-10464251

ABSTRACT

The proteolipid, a hydrophobic ATPase subunit essential for ion translocation, was purified from membranes of Methanococcus jannaschii by chloroform/methanol extraction and gel chromatography and was studied using molecular and biochemical techniques. Its apparent molecular mass as determined in SDS-polyacrylamide gel electrophoresis varied considerably with the conditions applied. The N-terminal sequence analysis made it possible to define the open reading frame and revealed that the gene is a triplication of the gene present in bacteria. In some of the proteolipids, the N-terminal methionine is excised. Consequently, two forms with molecular masses of 21,316 and 21,183 Da were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The molecular and biochemical data gave clear evidence that the mature proteolipid from M. jannaschii is a triplication of the 8-kDa proteolipid present in bacterial F(1)F(0) ATPases and most archaeal A(1)A(0) ATPases. Moreover, the triplicated form lacks a proton-translocating carboxyl group in the first of three pairs of transmembrane helices. This finding puts in question the current view of the evolution of H(+) ATPases and has important mechanistic consequences for the structure and function of H(+) ATPases in general.


Subject(s)
Methanococcus/chemistry , Proteolipids/chemistry , Proton-Translocating ATPases/chemistry , Mass Spectrometry , Methanococcus/metabolism , Protein Folding , Proton Pumps/chemistry , Proton Pumps/metabolism , Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...