Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Radiology ; 310(2): e231956, 2024 02.
Article in English | MEDLINE | ID: mdl-38376407

ABSTRACT

Background Coronary CT angiography is a first-line test in coronary artery disease but is limited by severe calcifications. Photon-counting-detector (PCD) CT improves spatial resolution. Purpose To investigate the effect of improved spatial resolution on coronary stenosis assessment and reclassification. Materials and Methods Coronary stenoses were evaluated prospectively in a vessel phantom (in vitro) containing two stenoses (25%, 50%), and retrospectively in patients (in vivo) who underwent ultrahigh-spatial-resolution cardiac PCD CT (from July 2022 to April 2023). Images were reconstructed at standard resolution (section thickness, 0.6 mm; increment, 0.4 mm; Bv44 kernel), high spatial resolution (section thickness, 0.4 mm; increment, 0.2 mm; Bv44 kernel), and ultrahigh spatial resolution (section thickness, 0.2; increment, 0.1 mm; Bv64 kernel). Percentages of diameter stenosis (DS) were compared between reconstructions. In vitro values were compared with the manufacturer specifications of the phantom and patient results were assessed regarding effects on Coronary Artery Disease Reporting and Data System (CAD-RADS) reclassification. Results The in vivo sample included 114 patients (mean age, 68 years ± 9 [SD]; 71 male patients). In vitro percentage DS measurements were more accurate with increasing spatial resolution for both 25% and 50% stenoses (mean bias for standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 10.1%, 8.0%, and 2.3%; P < .001). In vivo results confirmed decreasing median percentage DS with increasing spatial resolution for calcified stenoses (n = 161) (standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 41.5% [IQR, 27.3%-58.2%], 34.8% [IQR, 23.7%-55.1%], and 26.7% [IQR, 18.6%-44.3%]; P < .001), whereas noncalcified (n = 13) and mixed plaques (n = 19) did not show evidence of a difference (P ≥ .88). Ultrahigh-spatial-resolution reconstructions led to reclassification of 62 of 114 (54.4%) patients to lower CAD-RADS category than that assigned using standard resolution. Conclusion In vivo and in vitro coronary stenosis assessment improved for calcified stenoses by using ultrahigh-spatial-resolution PCD CT reconstructions, leading to lower percentage DS compared with standard resolution and clinically relevant rates of reclassification. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by McCollough in this issue.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Humans , Male , Aged , Coronary Artery Disease/diagnostic imaging , Constriction, Pathologic , Computed Tomography Angiography , Retrospective Studies , Coronary Stenosis/diagnostic imaging , Tomography, X-Ray Computed , Coronary Angiography
2.
Diagnostics (Basel) ; 13(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37296789

ABSTRACT

(1) Background: Photon-counting detector (PCD) CT offers a wide variety of kernels and sharpness levels for image reconstruction. The aim of this retrospective study was to determine optimal settings for coronary CT angiography (CCTA). (2) Methods: Thirty patients (eight female, mean age 63 ± 13 years) underwent PCD-CCTA in a high-pitch mode. Images were reconstructed using three different kernels and four sharpness levels (Br36/40/44/48, Bv36/40/44/48, and Qr36/40/44/48). To analyze objective image quality, the attenuation, image noise, contrast-to-noise ratio (CNR), and vessel sharpness were quantified in proximal and distal coronaries. For subjective image quality, two blinded readers assessed image noise, visually sharp reproduction of coronaries, and the overall image quality using a five-point Likert scale. (3) Results: Attenuation, image noise, CNR, and vessel sharpness significantly differed across kernels (all p < 0.001), with the Br-kernel reaching the highest attenuation. With increasing kernel sharpness, image noise and vessel sharpness increased, whereas CNR continuously decreased. Reconstruction with Br-kernel generally had the highest CNR (Br > Bv > Qr), except Bv-kernel had a superior CNR at sharpness level 40. Bv-kernel had significantly higher vessel sharpness than Br- and Qr-kernel (p < 0.001). Subjective image quality was rated best for kernels Bv40 and Bv36, followed by Br36 and Qr36. (4) Conclusion: Reconstructions with kernel Bv40 are beneficial to achieve optimal image quality in spectral high-pitch CCTA using PCD-CT.

SELECTION OF CITATIONS
SEARCH DETAIL