Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22762, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089984

ABSTRACT

Remote sensing and modelling of land use/land cover (LULC) change is useful to reveal the extent and spatial patterns of landscape changes at various environments and scales. Predicting susceptibility to LULC change is crucial for policy formulation and land management. However, the use of machine learning (ML) for modelling LULC change is limited. This study modelled LULC change susceptibility in the Okavango basin using ML techniques. Areas with high LULC change susceptibility are termed priority management areas (PMAs) in this study. Trajectories of LULC change between 1996 and 2020 are derived from existing LULC change maps of the Okavango basin. Overlay analysis is then used to detect patches of LULC change transitions. Three LULC transitional categories are adopted for modelling PMAs, namely 1) from natural to anthropogenic classes (Category A); 2) from anthropogenic to natural classes (Category B); and 3) from natural to another natural class (Category C). An ensemble of ML algorithms is calibrated with categories of LULC change and social-ecological drivers of change to produce maps showing the susceptibility of LULC change in the basin. Thereafter, thresholding is done on probability maps of susceptibility to LULC change based on the maximum sum of sensitivity and specificity (max SSS) to delineate PMAs. Results for trajectories of LULC change indicate that anthropogenic activities (croplands, built-up areas, and barelands) generally expanded, displacing natural areas (wetlands, woodlands, water, and shrubland) from 1996 to 2020. Regarding PMAs, anthropogenic-related PMAs (Category A ∼34 560 km2) covered a larger area compared to the natural ones (Categories B∼33 407 km2) and (Categories C∼15 040 km2). The findings of this study emphasize the value of ensemble ML modelling in identifying PMAs and guiding transboundary land use planning. Overall, this study highlights the role of anthropogenic activities in driving land use changes in Transboundary Drainage Basins (TDBs) and suggests a need to promote sustainable practices in predicted PMAs through comprehensive planning to ensure water availability in the Okavango basin.

2.
PLoS One ; 15(5): e0232962, 2020.
Article in English | MEDLINE | ID: mdl-32459824

ABSTRACT

When wildfires are controlled, they are integral to the existence of savannah ecosystems and play an intrinsic role in maintaining their structure and function. Ample studies on wildfire detection and severity mapping are available but what remains a challenge is the accurate mapping of burnt areas in heterogenous landscapes. In this study, we tested which spectral bands contributed most to burnt area detection when using Sentinel-2 and Landsat 8 multispectral sensors in two study sites. Post-fire Sentinel 2A and Landsat 8 images were classified using the Random Forest (RF) classifier. We found out that, the NIR, Red, Red-edge and Blue spectral bands contributed most to burned area detection when using Landsat 8 and Sentinel 2A. We found out that, Landsat 8 had a higher classification accuracy (OA = 0.92, Kappa = 0.85 and TSS = 0.84)) in study site 1 as compared to Sentinel-2 (OA = 0.86, Kappa = 0.74 and TSS = 0.76). In study site 2, Sentinel-2 had a slightly higher classification accuracy (OA = 0.89, Kappa = 0.67 and TSS = 0.64) which was comparable to that of Landsat 8 (OA = 0.85, Kappa = 0.50 and TSS = 0.41). Our study adds rudimentary knowledge on the most reliable sensor allowing reliable estimation of burnt areas and improved post-fire ecological evaluations on ecosystem damage and carbon emission.


Subject(s)
Environmental Monitoring/methods , Satellite Imagery/methods , Ecosystem , Grassland , Wildfires
3.
Parasit Vectors ; 11(1): 47, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29351762

ABSTRACT

BACKGROUND: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant environmental predictors improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a national scale in Zimbabwe. METHODS: Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed presence or absence of STH among school children aged 10-15 years was used to calibrate ten species distribution models (SDMs). The performance of SDMs calibrated with a set of environmental and edaphic variables was compared to that of SDMs calibrated with environmental variables only. Model performance was evaluated using the true skill statistic and receiver operating characteristic curve. RESULTS: Results show a significant improvement in model performance for both A. lumbricoides and hookworms for all ten SDMs after edaphic variables were combined with environmental variables in the modelling of the geographical distribution of the two STHs at national scale. Using the top three performing models, a consensus prediction was developed to generate the first continuous maps of the potential distribution of the two STHs in Zimbabwe. CONCLUSIONS: The findings from this study demonstrate significant model improvement if relevant edaphic variables are included in model calibration resulting in more accurate mapping of STH. The results also provide spatially-explicit information to aid targeted control of STHs in Zimbabwe and other countries with STH burden.


Subject(s)
Helminthiasis/epidemiology , Helminthiasis/transmission , Models, Statistical , Soil/parasitology , Adolescent , Ancylostomatoidea/isolation & purification , Animals , Ascaris lumbricoides/isolation & purification , Child , Environment , Female , Health Surveys , Helminthiasis/parasitology , Humans , Male , Prevalence , ROC Curve , Zimbabwe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...