Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 24(36): 365802, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22907119

ABSTRACT

We investigate, in one spatial dimension, the quantum mechanical tunneling of an exciton incident upon a heterostructure barrier. We model the relative motion eigenstates of the exciton using a form of the one-dimensional hydrogen atom which avoids difficulties previously associated with 1D hydrogenic states. We obtain probabilities of reflection and transmission using the method of variable transmission and reflection amplitudes. Our calculations may be broadly divided into two sets. In the first set, we consider general qualitative aspects of exciton tunneling, such as the effect of different effective masses for electrons and holes and a relative difference in electron and hole barrier strengths. The second set models the tunneling of an exciton in a GaAs/Al(x)Ga(1-x)As heterostructure. In these calculations we find that, for energies such that the two lowest exciton states are coupled, the probability spectrum for transition from the ground state to the first excited state is identical to that for transition from the first excited state to the ground state. In addition, narrow peaks in the probability spectrum for transition are observed across this energy range for low dopant concentration x. Other interesting phenomena correlated with these peaks in the transition probability are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...