Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Earth Space Chem ; 8(6): 1146-1153, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38919853

ABSTRACT

Investigating the habitability of ocean worlds is a priority of current and future NASA missions. The Europa Clipper mission will conduct approximately 50 flybys of Jupiter's moon Europa, returning a detailed portrait of its interior from the synthesis of data from its instrument suite. The magnetometer on board has the capability of decoupling Europa's induced magnetic field to high precision, and when these data are inverted, the electrical conductivity profile from the electrically conducting subsurface salty ocean may be constrained. To optimize the interpretation of magnetic induction data near ocean worlds and constrain salinity from electrical conductivity, accurate laboratory electrical conductivity data are needed under the conditions expected in their subsurface oceans. At the high-pressure, low-temperature (HPLT) conditions of icy worlds, comprehensive conductivity data sets are sparse or absent from either laboratory data or simulations. We conducted molecular dynamics simulations of candidate ocean compositions of aqueous NaCl under HPLT conditions at multiple concentrations. Our results predict electrical conductivity as a function of temperature, pressure, and composition, showing a decrease in conductivity as the pressure increases deeper into the interior of an icy moon. These data can guide laboratory experiments at conditions relevant to icy moons and can be used in tandem to forward-model the magnetic induction signals at ocean worlds and compare with future spacecraft data. We discuss implications for the Europa Clipper mission.

2.
Nanoscale Horiz ; 9(4): 646-655, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38426307

ABSTRACT

The superhard ReB2 system is the hardest pure phase diboride synthesized to date. Previously, we have demonstrated the synthesis of nano-ReB2 and the use of this nanostructured material for texture analysis using high-pressure radial diffraction. Here, we investigate the size dependence of hardness in the nano-ReB2 system using nanocrystalline ReB2 with a range of grain sizes (20-60 nm). Using high-pressure X-ray diffraction, we characterize the mechanical properties of these materials, including bulk modulus, lattice strain, yield strength, and texture. In agreement with the Hall-Petch effect, the yield strength increases with decreasing size, with the 20 nm ReB2 exhibiting a significantly higher yield strength than any of the larger grained materials or bulk ReB2. Texture analysis on the high pressure diffraction data shows a maximum along the [0001] direction, which indicates that plastic deformation is primarily controlled by the basal slip system. At the highest pressure (55 GPa), the 20 nm ReB2 shows suppression of other slip systems observed in larger ReB2 samples, in agreement with its high yield strength. This behavior, likely arises from an increased grain boundary concentration in the smaller nanoparticles. Overall, these results highlight that even superhard materials can be made more mechanically robust using nanoscale grain size effects.

3.
Nature ; 612(7940): 459-464, 2022 12.
Article in English | MEDLINE | ID: mdl-36418403

ABSTRACT

High pressure represents extreme environments and provides opportunities for materials discovery1-8. Thermal transport under high hydrostatic pressure has been investigated for more than 100 years and all measurements of crystals so far have indicated a monotonically increasing lattice thermal conductivity. Here we report in situ thermal transport measurements in the newly discovered semiconductor crystal boron arsenide, and observe an anomalous pressure dependence of the thermal conductivity. We use ultrafast optics, Raman spectroscopy and inelastic X-ray scattering measurements to examine the phonon bandstructure evolution of the optical and acoustic branches, as well as thermal conductivity under varied temperatures and pressures up to 32 gigapascals. Using atomistic theory, we attribute the anomalous high-pressure behaviour to competitive heat conduction channels from interactive high-order anharmonicity physics inherent to the unique phonon bandstructure. Our study verifies ab initio theory calculations and we show that the phonon dynamics-resulting from competing three-phonon and four-phonon scattering processes-are beyond those expected from classical models and seen in common materials. This work uses high-pressure spectroscopy combined with atomistic theory as a powerful approach to probe complex phonon physics and provide fundamental insights for understanding microscopic energy transport in materials of extreme properties.

4.
ACS Nano ; 14(1): 1141-1147, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31891253

ABSTRACT

Using a combination of in situ ultrahigh-vacuum variable-temperature scanning tunneling microscopy, ex situ Raman spectroscopy, and scanning electron microscopy, we investigated the growth of graphene using benzene on Pd(111) at temperatures up to 1100 K. Benzene adsorbs readily on Pd(111) at room temperature and forms an ordered superstructure upon annealing at 473 K. Exposure to benzene at 673 K enhances Pd step motion and yields primarily amorphous carbon upon cooling to room temperature. Monolayer graphene domains, 10-30 nm in size, appear during annealing this sample at 873 K. Dosing benzene at 1100 K results in graphene domains with varying degrees of crystallinity, while post-deposition annealing at 1100 K for 1200 s yields monolayer graphene domains larger than 150 × 150 nm2. Our results, which indicate that graphene growth on Pd(111) using benzene requires deposition/annealing temperatures higher than 673 K, are in striking contrast with the reported growth of graphene using benzene at temperatures as low as 373 K on relatively inert Cu surfaces.

5.
Inorg Chem ; 57(11): 6447-6455, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29737842

ABSTRACT

We report the formation of an ultrahigh CO2-loaded pure-SiO2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO2 medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO2-loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.

6.
Inorg Chem ; 55(20): 10793-10799, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27709926

ABSTRACT

The role of carbon dioxide, CO2, as oxidizing agent at high pressures and temperatures is evaluated by studying its chemical reactivity with three transition metals: Au, Pt, and Re. We report systematic X-ray diffraction measurements up to 48 GPa and 2400 K using synchrotron radiation and laser-heating diamond-anvil cells. No evidence of reaction was found in Au and Pt samples in this pressure-temperature range. In the Re + CO2 system, however, a strongly-driven redox reaction occurs at P > 8 GPa and T > 1500 K, and orthorhombic ß-ReO2 is formed. This rhenium oxide phase is stable at least up to 48 GPa and 2400 K and was recovered at ambient conditions. Raman spectroscopy data confirm graphite as a reaction product. Ab-initio total-energy structural and compressibility data of the ß-ReO2 phase shows an excellent agreement with experiments, altogether accurately confirming CO2 reduction P-T conditions in the presence of rhenium metal and the ß-ReO2 equation of state.

7.
Nat Commun ; 5: 5091, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25311627

ABSTRACT

Knowledge of the occurrence and mobility of carbonate-rich melts in the Earth's mantle is important for understanding the deep carbon cycle and related geochemical and geophysical processes. However, our understanding of the mobility of carbonate-rich melts remains poor. Here we report viscosities of carbonate melts up to 6.2 GPa using a newly developed technique of ultrafast synchrotron X-ray imaging. These carbonate melts display ultralow viscosities, much lower than previously thought, in the range of 0.006-0.010 Pa s, which are ~2 to 3 orders of magnitude lower than those of basaltic melts in the upper mantle. As a result, the mobility of carbonate melts (defined as the ratio of melt-solid density contrast to melt viscosity) is ~2 to 3 orders of magnitude higher than that of basaltic melts. Such high mobility has significant influence on several magmatic processes, such as fast melt migration and effective melt extraction beneath mid-ocean ridges.

8.
J Am Chem Soc ; 134(51): 20660-8, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23171079

ABSTRACT

To enhance the hardness of tungsten tetraboride (WB(4)), a notable lower cost member of the late transition-metal borides, we have synthesized and characterized solid solutions of this material with tantalum (Ta), manganese (Mn), and chromium (Cr). Various concentrations of these transition-metal elements, ranging from 0.0 to 50.0 at. %, on a metals basis, were made. Arc melting was used to synthesize these refractory compounds from the pure elements. Elemental and phase purity of the samples were examined using energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), and microindentation was utilized to measure the Vickers hardness under applied loads of 0.49-4.9 N. XRD results indicate that the solubility limit is below 10 at. % for Cr and below 20 at. % for Mn, while Ta is soluble in WB(4) above 20 at. %. Optimized Vickers hardness values of 52.8 ± 2.2, 53.7 ± 1.8, and 53.5 ± 1.9 GPa were achieved, under an applied load of 0.49 N, when ~2.0, 4.0, and 10.0 at. % Ta, Mn, and Cr were added to WB(4) on a metals basis, respectively. Motivated by these results, ternary solid solutions of WB(4) were produced, keeping the concentration of Ta in WB(4) fixed at 2.0 at. % and varying the concentration of Mn or Cr. This led to hardness values of 55.8 ± 2.3 and 57.3 ± 1.9 GPa (under a load of 0.49 N) for the combinations W(0.94)Ta(0.02)Mn(0.04)B(4) and W(0.93)Ta(0.02)Cr(0.05)B(4), respectively. In situ high-pressure XRD measurements collected up to ~65 GPa generated a bulk modulus of 335 ± 3 GPa for the hardest WB(4) solid solution, W(0.93)Ta(0.02)Cr(0.05)B(4), and showed suppression of a pressure-induced phase transition previously observed in pure WB(4).

9.
J Am Chem Soc ; 131(29): 9904-5, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19580315

ABSTRACT

A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.


Subject(s)
Lithium/chemistry , Electrochemistry , Isotopes/chemistry
10.
Phys Rev Lett ; 100(4): 045506, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352299

ABSTRACT

Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

11.
Science ; 316(5823): 436-9, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17446399

ABSTRACT

The quest to create superhard materials rarely strays from the use of high-pressure synthetic methods, which typically require gigapascals of applied pressure. We report that rhenium diboride (ReB2), synthesized in bulk quantities via arc-melting under ambient pressure, rivals materials produced with high-pressure methods. Microindentation measurements on ReB2 indicated an average hardness of 48 gigapascals under an applied load of 0.49 newton, and scratch marks left on a diamond surface confirmed its superhard nature. Its incompressibility along the c axis was equal in magnitude to the linear incompressibility of diamond. In situ high-pressure x-ray diffraction measurements yielded a bulk modulus of 360 gigapascals, and radial diffraction indicated that ReB2 is able to support a remarkably high differential stress. This combination of properties suggests that this material may find applications in cutting when the formation of carbides prevents the use of traditional materials such as diamond.


Subject(s)
Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Rhenium/chemistry , Anisotropy , Compressive Strength , Hardness , Pressure , Stress, Mechanical , X-Ray Diffraction
12.
J Phys Condens Matter ; 18(25): S1039-47, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-22611094

ABSTRACT

We present isotropic, elastic-plastic finite element calculations detailing the pressure relationship between an inclusion and its surrounding matrix, subject to an externally imposed hydrostatic strain. In general, the inclusion and the matrix have different values of hydrostatic pressure, depending on their absolute and relative values of Young's modulus and Poisson's ratio. A series of finite element models was used to explore the parameter space of the elastic and plastic properties of an inclusion within a matrix. In all cases where there is insufficient relaxation of the nonhydrostatic stress, the material with the higher bulk modulus will also have a higher pressure, regardless of the shear moduli. The complete data set was subjected to a Pareto analysis to determine the main and secondary effects which influence the final result, expressed as the ratio of the pressure of the matrix to that of the inclusion. The four most important factors which determine the pressure ratio of an inclusion and matrix are the Young's modulus of the matrix, the interaction of the Young's modulus and the yield strength of the matrix material, the Young's modulus of the inclusion, and the interaction of the Young's modulus of the inclusion with the yield strength of the matrix material. The yield strength of the inclusion has a statistically insignificant effect on the results. This information provides guidelines for designing the most effective combinations of unknowns and material standards to minimize pressure errors in equation of state measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...