Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 453: 125-135, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29778649

ABSTRACT

A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations.


Subject(s)
Ethanol/metabolism , Fermentation , Models, Biological , Saccharomyces cerevisiae/metabolism , Biomass , Calibration , Kinetics , Models, Theoretical , Oxygen Consumption/physiology , Research Design , Systems Biology
2.
ISRN Hepatol ; 2014: 846923, 2014.
Article in English | MEDLINE | ID: mdl-27335843

ABSTRACT

Background. Nonalcoholic fatty liver disease is now acknowledged as a complex public health issue linked to sedentary lifestyle, obesity, and related disorders like type 2 diabetes and metabolic syndrome. Aims. We aimed to retrieve its trends out of the huge amount of published data. Therefore, we conducted an extensive literature search to identify possible biomarker and/or biomarker combinations by retrospectively assessing and evaluating common and novel biomarkers to predict progression and prognosis of obesity related liver diseases. Methodology. We analyzed finally 62 articles accounting for 157 cohorts and 45,288 subjects. Results. Despite the various approaches, most cohorts were considerably small and rarely comparable. Also, we found that the same standard parameters were measured rather than novel biomarkers. Diagnostics approaches appeared incomparable. Conclusions. Further collaborative investigations on harmonizing ways of data acquisition and identifying such biomarkers for clinical use are necessary to yield sufficient significant results of potential biomarkers.

3.
AAPS PharmSciTech ; 14(3): 1034-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23797304

ABSTRACT

Continuous pharmaceutical manufacturing processes are of increased industrial interest and require uni- and multivariate Process Analytical Technology (PAT) data from different unit operations to be aligned and explored within the Quality by Design (QbD) context. Real-time pharmaceutical process verification is accomplished by monitoring univariate (temperature, pressure, etc.) and multivariate (spectra, images, etc.) process parameters and quality attributes, to provide an accurate state estimation of the process, required for advanced control strategies. This paper describes the development and use of such tools for a continuous hot melt extrusion (HME) process, monitored with generic sensors and a near-infrared (NIR) spectrometer in real-time, using SIPAT (Siemens platform to collect, display, and extract process information) and additional components developed as needed. The IT architecture of such a monitoring procedure based on uni- and multivariate sensor systems and their integration in SIPAT is shown. SIPAT aligned spectra from the extrudate (in the die section) with univariate measurements (screw speed, barrel temperatures, material pressure, etc.). A multivariate supervisory quality control strategy was developed for the process to monitor the hot melt extrusion process on the basis of principal component analysis (PCA) of the NIR spectra. Monitoring the first principal component and the time-aligned reference feed rate enables the determination of the residence time in real-time.


Subject(s)
Chemistry, Pharmaceutical , Hot Temperature , Software , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...