Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Signal Process Control ; 81: 104499, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36530217

ABSTRACT

The measures taken during the pandemic have had lasting effects on people's lives and perceptions of the ability of national and multilateral institutions to drive human development. Policies that changed people's behavior were at the heart of containing the spread of the virus. As a result, it has become a systemic human development crisis affecting health, the economy, education, social life, and accumulated gains. This study shows how the relationship of the Human Development Index (HDI), which has combined effects on health, education, and the economy, should be considered in the context of pandemic factors. First, COVID-19 data of the countries received from a public and credible source were extracted and organized into an acceptable structure. Then, we applied statistical feature selection to determine which variables are closely related to HDI and enabled the Deep Convolutional Neural Network (DCNN) model to give more accurate results. The Continuous Wavelet Transform (CWT) and scalogram methods were used for the time-series data visualization. Three different images of each country are combined into a single image to penetrate each other for ease of processing. These images were made suitable for the input of the ResNet-50 network, which is a pre-trained DCNN model, by going through various preprocessing processes. After the training and validation processes, the feature vectors in the fc1000 layer of the network were drawn and given to the Support Vector Machine Classifier (SVMC) input. We achieved total performance metrics of specificity (88.2%), sensitivity (96.5%), precision (99%), F1 Score (94.9%) and MCC (85.9%).

2.
J Med Virol ; 94(8): 3698-3705, 2022 08.
Article in English | MEDLINE | ID: mdl-35419818

ABSTRACT

Coronavirus disease 2019 (COVID-19) has quickly turned into a global health problem. Computed tomography (CT) findings of COVID-19 pneumonia and community-acquired pneumonia (CAP) may be similar. Artificial intelligence (AI) is a popular topic among medical imaging techniques and has caused significant developments in diagnostic techniques. This retrospective study aims to analyze the contribution of AI to the diagnostic performance of pulmonologists in distinguishing COVID-19 pneumonia from CAP using CT scans. A deep learning-based AI model was created to be utilized in the detection of COVID-19, which extracted visual data from volumetric CT scans. The final data set covered a total of 2496 scans (887 patients), which included 1428 (57.2%) from the COVID-19 group and 1068 (42.8%) from the CAP group. CT slices were classified into training, validation, and test datasets in an 8:1:1. The independent test data set was analyzed by comparing the performance of four pulmonologists in differentiating COVID-19 pneumonia both with and without the help of the AI. The accuracy, sensitivity, and specificity values of the proposed AI model for determining COVID-19 in the independent test data set were 93.2%, 85.8%, and 99.3%, respectively, with the area under the receiver operating characteristic curve of 0.984. With the assistance of the AI, the pulmonologists accomplished a higher mean accuracy (88.9% vs. 79.9%, p < 0.001), sensitivity (79.1% vs. 70%, p < 0.001), and specificity (96.5% vs. 87.5%, p < 0.001). AI support significantly increases the diagnostic efficiency of pulmonologists in the diagnosis of COVID-19 via CT. Studies in the future should focus on real-time applications of AI to fight the COVID-19 infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Artificial Intelligence , COVID-19/diagnosis , Community-Acquired Infections/diagnosis , Humans , Pneumonia/diagnosis , Pulmonologists , Retrospective Studies , SARS-CoV-2
3.
Clin Imaging ; 81: 1-8, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34592696

ABSTRACT

PURPOSE: The aim of this study was to establish and evaluate a fully automatic deep learning system for the diagnosis of COVID-19 using thoracic computed tomography (CT). MATERIALS AND METHODS: In this retrospective study, a novel hybrid model (MTU-COVNet) was developed to extract visual features from volumetric thoracic CT scans for the detection of COVID-19. The collected dataset consisted of 3210 CT scans from 953 patients. Of the total 3210 scans in the final dataset, 1327 (41%) were obtained from the COVID-19 group, 929 (29%) from the CAP group, and 954 (30%) from the Normal CT group. Diagnostic performance was assessed with the area under the receiver operating characteristic (ROC) curve, sensitivity, and specificity. RESULTS: The proposed approach with the optimized features from concatenated layers reached an overall accuracy of 97.7% for the CT-MTU dataset. The rest of the total performance metrics, such as; specificity, sensitivity, precision, F1 score, and Matthew Correlation Coefficient were 98.8%, 97.6%, 97.8%, 97.7%, and 96.5%, respectively. This model showed high diagnostic performance in detecting COVID-19 pneumonia (specificity: 98.0% and sensitivity: 98.2%) and CAP (specificity: 99.1% and sensitivity: 97.1%). The areas under the ROC curves for COVID-19 and CAP were 0.997 and 0.996, respectively. CONCLUSION: A deep learning-based AI system built on the CT imaging can detect COVID-19 pneumonia with high diagnostic efficiency and distinguish it from CAP and normal CT. AI applications can have beneficial effects in the fight against COVID-19.


Subject(s)
COVID-19 , Deep Learning , Humans , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
4.
PLoS One ; 12(11): e0188527, 2017.
Article in English | MEDLINE | ID: mdl-29186173

ABSTRACT

This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC) method for several test scenarios. An experimental study demonstrates application of method for rotor control.


Subject(s)
Computer Simulation , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...