Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 47(12): 2061-2070, 2022 11.
Article in English | MEDLINE | ID: mdl-35034100

ABSTRACT

Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by a distributed cortical network. In one node of this network, the dorsolateral prefrontal cortex (DLPFC), altered expression of transcripts for actin assembly and mitochondrial oxidative phosphorylation (OXPHOS) have been reported in SZ. To understand the relationship between these processes, and the extent to which similar alterations are present in other regions of vsWM network in SZ, a subset of actin- (CDC42, BAIAP2, ARPC3, and ARPC4) and OXPHOS-related (ATP5H, COX4I1, COX7B, and NDUFB3) transcripts were quantified in DLPFC by RNA sequencing in 139 SZ and unaffected comparison (UC) subjects, and in DLPFC and three other regions of the cortical vsWM network by qPCR in 20 pairs of SZ and UC subjects. By RNA sequencing, levels of actin- and OXPHOS-related transcripts were significantly altered in SZ, and robustly correlated in both UC and SZ subject groups. By qPCR, cross-regional expression patterns of these transcripts in UC subjects were consistent with greater actin assembly in DLPFC and higher OXPHOS activity in primary visual cortex (V1). In SZ, CDC42 and ARPC4 levels were lower in all regions, BAIAP2 levels higher only in V1, and ARPC3 levels unaltered across regions. All OXPHOS-related transcript levels were lower in SZ, with the disease effect decreasing from posterior to anterior regions. The differential alterations in markers of actin assembly and energy production across regions of the cortical vsWM network in SZ suggest that each region may make specific contributions to vsWM impairments in the illness.


Subject(s)
Schizophrenia , Actins/genetics , Actins/metabolism , Humans , Memory, Short-Term , Oxidative Phosphorylation , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
2.
Neurobiol Dis ; 155: 105382, 2021 07.
Article in English | MEDLINE | ID: mdl-33940180

ABSTRACT

The unique fast spiking (FS) phenotype of cortical parvalbumin-positive (PV) neurons depends on the expression of multiple subtypes of voltage-gated potassium channels (Kv). PV neurons selectively express Kcns3, the gene encoding Kv9.3 subunits, suggesting that Kcns3 expression is critical for the FS phenotype. KCNS3 expression is lower in PV neurons in the neocortex of subjects with schizophrenia, but the effects of this alteration are unclear, because Kv9.3 subunit function is poorly understood. Therefore, to assess the role of Kv9.3 subunits in PV neuron function, we combined gene expression analyses, computational modeling, and electrophysiology in acute slices from the cortex of Kcns3-deficient mice. Kcns3 mRNA levels were ~ 50% lower in cortical PV neurons from Kcns3-deficient relative to wildtype mice. While silent per se, Kv9.3 subunits are believed to amplify the Kv2.1 current in Kv2.1-Kv9.3 channel complexes. Hence, to assess the consequences of reducing Kv9.3 levels, we simulated the effects of decreasing the Kv2.1-mediated current in a computational model. The FS cell model with reduced Kv2.1 produced spike trains with irregular inter-spike intervals, or stuttering, and greater Na+ channel inactivation. As in the computational model, PV basket cells (PVBCs) from Kcns3-deficient mice displayed spike trains with strong stuttering, which depressed PVBC firing. Moreover, Kcns3 deficiency impaired the recruitment of PVBC firing at gamma frequency by stimuli mimicking synaptic input observed during cortical UP states. Our data indicate that Kv9.3 subunits are critical for PVBC physiology and suggest that KCNS3 deficiency in schizophrenia could impair PV neuron firing, possibly contributing to deficits in cortical gamma oscillations in the illness.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Parvalbumins/physiology , Potassium Channels, Voltage-Gated/deficiency , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Culture Techniques , Potassium Channels, Voltage-Gated/genetics , Schizophrenia/genetics
3.
Cereb Cortex ; 29(8): 3540-3550, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30247542

ABSTRACT

Visuospatial working memory (WM), which is impaired in schizophrenia, depends on a distributed network including visual, posterior parietal, and dorsolateral prefrontal cortical regions. Within each region, information processing is differentially regulated by subsets of γ-aminobutyric acid (GABA) neurons that express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). In schizophrenia, WM impairments have been associated with alterations of PV and SST neurons in the dorsolateral prefrontal cortex. Here, we quantified transcripts selectively expressed in GABA neuron subsets across four cortical regions in the WM network from comparison and schizophrenia subjects. In comparison subjects, PV mRNA levels declined and SST mRNA levels increased from posterior to anterior regions, whereas VIP mRNA levels were comparable across regions except for the primary visual cortex (V1). In schizophrenia subjects, each transcript in PV and SST neurons exhibited similar alterations across all regions, whereas transcripts in VIP neurons were unaltered in any region except for V1. These findings suggest that the contribution of each GABA neuron subset to inhibitory regulation of local circuitry normally differs across cortical regions of the visuospatial WM network and that in schizophrenia alterations of PV and SST neurons are a shared feature across these regions, whereas VIP neurons are affected only in V1.


Subject(s)
Brain/metabolism , GABAergic Neurons/metabolism , Memory, Short-Term/physiology , Parvalbumins/genetics , Schizophrenia/genetics , Somatostatin/genetics , Vasoactive Intestinal Peptide/genetics , Adult , Case-Control Studies , Female , Gene Expression Profiling , Glutamate Decarboxylase/genetics , Humans , LIM-Homeodomain Proteins/genetics , Male , Middle Aged , Nerve Tissue Proteins/genetics , Parietal Lobe/metabolism , Potassium Channels, Voltage-Gated/genetics , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Opioid, mu/genetics , Schizophrenia/physiopathology , Spatial Processing , Transcription Factors/genetics , Visual Cortex/metabolism
4.
Schizophr Bull ; 42(4): 992-1002, 2016 07.
Article in English | MEDLINE | ID: mdl-26980143

ABSTRACT

In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis.


Subject(s)
Cerebral Cortex/metabolism , GABAergic Neurons/metabolism , Gene Expression/physiology , Glutamate Decarboxylase/metabolism , Parvalbumins/metabolism , Schizophrenia/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Female , Glutamate Decarboxylase/genetics , Male , Memory, Short-Term , Mice , Mice, Inbred C57BL , Mice, Knockout , Prepulse Inhibition
5.
Dev Biol ; 314(2): 433-42, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18166171

ABSTRACT

The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear beta-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear beta-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway).


Subject(s)
Embryo, Nonmammalian/physiology , Kruppel-Like Transcription Factors/genetics , Mesoderm/physiology , Sea Urchins/embryology , Animals , Cloning, Molecular , DNA, Complementary/genetics , In Situ Hybridization , Larva/physiology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sea Urchins/genetics , Transcription, Genetic
6.
Dev Genes Evol ; 215(9): 450-59, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16078091

ABSTRACT

In the sea urchin embryo, micromeres have two distinct functions: they differentiate cell autonomously into the skeletogenic mesenchyme cells and act as an organizing center that induces endomesoderm formation. We demonstrated that micro1 controls micromere specification as a transcriptional repressor. Because micro1 is a multicopy gene with at least six polymorphic loci, it has been difficult to consistently block micro1 function by morpholino-mediated knockdown. Here, to block micro1 function, we used an active activator of micro1 consisting of a fusion protein of the VP16 activation domain and the micro1 homeodomain. Embryos injected with mRNA encoding the fusion protein exhibited a phenotype similar to that of micromere-less embryos. To evaluate micro1 function in the micromere, we constructed chimeric embryos composed of animal cap mesomeres and a micromere quartet from embryos injected with the fusion protein mRNA. The chimeras developed into dauerblastulae with no vegetal structures, in which the micromere progeny constituted the blastula wall. We also analyzed the phenotype of chimeras composed of an animal cap and a mesomere expressing micro1. These chimeras developed into pluteus larvae, in which the mesomere descendants ingressed as primary mesenchyme cells and formed a complete set of skeletal rods. The hindgut and a part of the midgut were also generated from host mesomeres. However, the foregut and nonskeletogenic mesoderm were not formed in the larvae. From these observations, we conclude that micro1 is necessary and sufficient for both micromere differentiation and mid/hindgut-inducing activity, and we also suggest that micro1 may not fulfill all micromere functions.


Subject(s)
Genes, Homeobox/genetics , Sea Urchins/embryology , Sea Urchins/genetics , Animals , Blastomeres/cytology , Cell Differentiation/genetics , Chimera/embryology , Chimera/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental , Genes, Homeobox/physiology , In Situ Hybridization , Mesoderm/cytology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...