Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 76: 102883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569438

ABSTRACT

Understanding the ability of older adults to control pedal position angle and investigating whether this ability can be enhanced through practice may contribute to the prevention of traffic accidents. This study aimed to investigate repetitive effects on variability of the pedal position and neural drive during car-pedal operation in older adults. Thirteen older and 11 young adults performed 105 (21 sets × 5 repetitions) pedal angle control tasks with plantar flexor contraction. High-density surface electromyograms were recorded of triceps surae muscles. A cumulative spike train as a neural drive was calculated using continuously active motor unit activities. The coefficient of variation of the angle was higher in older (1.47 ± 1.06 %) than young (0.41 ± 0.21 %) adults in the first sets, and improved to 0.67 ± 0.51 % in the final sets in older adults only. There was no significant difference in neural drive variability between older and young adults. Our results suggest that repetition improves angular steadiness in older adults. However, this effect could not be explained by neural output which is estimated from lower threshold motor units that are continuously active.


Subject(s)
Electromyography , Muscle, Skeletal , Humans , Male , Aged , Electromyography/methods , Muscle, Skeletal/physiology , Female , Automobile Driving , Muscle Contraction/physiology , Adult , Aging/physiology
2.
Eur J Appl Physiol ; 123(8): 1701-1707, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37004566

ABSTRACT

This study was aimed to investigate whether pedal characteristics and age affect pedal position accuracy, fluctuation, and neural drive variability during a position control task. Twelve older (age: 72.8 ± 3.6 years) and twelve young (age: 23.8 ± 4.4 years) adults performed trapezoidal position control tasks involving holding plantar flexor contraction for 10 s with four pedal conditions (regular and pulley types × standard and low forces). Neural drive of the triceps surae muscle was estimated with high-density surface electromyograms and individual motor unit decomposition methods. The central 5 s of the sustained contraction phase was used for analysis. Variabilities of the angle and neural drive are presented by the coefficient of variation. We observed that the angle fluctuation was greater in older than young adults for four pedal conditions (p < 0.05). Regardless of age, using pulley pedals increased angle fluctuation more than regular pedals (p < 0.05). No significant interaction was found for pedal conditions and age in pedal position accuracy, angle fluctuation, or neural output. Our results suggest that older adults have poor control ability to maintain pedal angles, and pulley pedals make it difficult to adjust the pedal angles regardless of age. However, the neural output estimated by the continuously active motor units failed to explain these differences.


Subject(s)
Foot , Muscle, Skeletal , Young Adult , Humans , Aged , Adult , Electromyography , Muscle, Skeletal/physiology , Leg/physiology , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...