Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4934, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28694481

ABSTRACT

Fetal alcohol spectrum disorders (FASD) constitute a wide range of disorders that arise from prenatal exposure to ethanol (EtOH). However, detailed reports regarding the adverse effects of prenatal EtOH exposure on neocortical morphology and its underlying pathogenic mechanisms are limited. In the present study, we aimed to characterize the anatomical abnormalities of neocortical development and their correlation with microglial properties and neuro-inflammation in a mouse model of FASD. We evaluated the development and maturation of the neocortex in ICR mice prenatally exposed to 25% (w/v) EtOH using histological and molecular analyses. Reduced proliferation and excessive cell death were observed in the dorsal telencephalon. Abnormal neuronal distribution, layer formation, and dopaminergic neuronal projections were observed in the neocortex. Disruption of microglial differentiation (M1/M2 microglial ratio) and abnormal expression of pro-inflammatory and neurotrophic factors were induced, and these abnormalities were ameliorated by co-treatment with an anti-inflammatory drug (pioglitazone). FASD model mice displayed histological abnormalities, microglial abnormalities, and neuro-inflammation in both the embryonic and newborn stages. Thus, anti-inflammatory therapeutics may provide a novel preventive approach for the treatment of FASD.


Subject(s)
Ethanol/adverse effects , Neocortex/drug effects , Neocortex/metabolism , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Fetal Alcohol Spectrum Disorders/etiology , Fetal Alcohol Spectrum Disorders/metabolism , Fetal Alcohol Spectrum Disorders/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Mice , Microglia/drug effects , Microglia/metabolism , Neocortex/pathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurons/drug effects , Neurons/metabolism , Pregnancy , Signal Transduction
2.
Exp Toxicol Pathol ; 69(1): 1-7, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28029482

ABSTRACT

Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. The purpose of the present study was to evaluate the potential toxicity of DPAA when administered to rats in their drinking water for 52 weeks. DPAA was administered to groups 1-4 at concentrations of 0, 5, 10, and 20ppm in their drinking water for 52 weeks. There were no significant differences in the final body weights between the control groups and the treatment groups in male or female rats. In serum biochemistry, in females 20ppm DPAA significantly increased alkaline phosphatase and γ-glitamyl transferase compared to controls, and 10 and 20ppm DPAA significantly increased total cholesterol compared to controls. Absolute and relative liver weights were significantly increased in females treated with 20ppm DPAA compared to the control group. Dilation of the common bile duct outside the papilla of Vater and stenosis of the papilla of Vater was observed in all male and female rats administered 20ppm DPAA. The incidence of intrahepatic bile duct hyperplasia was significantly increased in male and female rats treated with 20ppm DPAA compared to the control groups. These results suggest that DPAA is toxic to the bile duct epithelium in rats. The no-observed adverse effect levels of DPAA were estimated to be 10ppm (0.48mg/kg b.w./day) for males and 5ppm (0.35mg/kg b.w./day) for females under the conditions of this study.


Subject(s)
Arsenicals/adverse effects , Bile Ducts/drug effects , Animals , Chronic Disease , Drinking Water , Female , Male , Rats , Rats, Inbred F344
3.
J Environ Sci (China) ; 49: 125-130, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28007167

ABSTRACT

Arsenic is a well-known human bladder and liver carcinogen, but its exact mechanism of carcinogenicity is not fully understood. Dimethylarsinic acid (DMAV) is a major urinary metabolite of sodium arsenite (iAsIII) and induces urinary bladder cancers in rats. DMAV and iAsIII are negative in in vitro mutagenicity tests. However, their in vivo mutagenicities have not been determined. The purpose of present study is to evaluate the in vivo mutagenicities of DMAV and iAsIII in rat urinary bladder epithelium and liver using gpt delta F344 rats. Ten-week old male gpt delta F344 rats were randomized into 3 groups and administered 0, 92mg/L DMAV, or 87mg/L iAsIII (each 50mg/L As) for 13weeks in the drinking water. In the mutation assay, point mutations are detected in the gpt gene by 6-thioguanine selection (gpt assay) and deletion mutations are identified in the red/gam genes by Spi- selection (Spi- assay). Results of the gpt and Spi- assays showed that DMAV and iAsIII had no effects on the mutant frequencies or mutation spectrum in urinary bladder epithelium or liver. These findings indicate that DMAV and iAsIII are not mutagenic in urinary bladder epithelium or liver in rats.


Subject(s)
Arsenites/toxicity , Cacodylic Acid/toxicity , Carcinogens/toxicity , Mutagenicity Tests , Sodium Compounds/toxicity , Animals , Escherichia coli Proteins/genetics , Liver , Pentosyltransferases/genetics , Rats , Rats, Inbred F344 , Urothelium
4.
J Toxicol Sci ; 40(5): 647-56, 2015.
Article in English | MEDLINE | ID: mdl-26354381

ABSTRACT

Based on the findings of epidemiological studies in Japan that occupational exposure to 1,2-dichloropropane (1,2-DCP) was associated with increased cholangiocarcinomas, 1,2-DCP has recently been classified as being carcinogenic to humans (Group 1). However, the cholangiocarcinogenicity of 1,2-DCP has not been demonstrated experimentally, and it was negative for cholangiocarcinogenicity in rats and mice. The present study determined the effects of 1,2-DCP on N-nitrosobis(2-oxopropyl)amine (BOP)-induced cholangiocarcinogenesis in male hamsters. We found that 1,2-DCP did not enhance the development of BOP-induced atypical biliary hyperplasia and did not induce any lesions in liver bile duct when administered alone. Notably, 1,2-DCP had no effect on the proliferative activity of bile duct epithelial cells regardless of BOP-initiation. These results demonstrate that 1,2-DCP lacks promoting effects on BOP-induced cholangiocarcinogenesis and suggest the possibility that 1,2-DCP is not cholangiocarcinogenic to the hamster in the present model. In addition, 1,2-DCP also lacks promoting effects on pancreatic, lung, and renal carcinogenesis. As the occurrence of occupational cholangiocarcinomas in Japan might be attributed to exposure to multiple chemicals, the results of the present study indicate that it will be necessary to determine the cholangiocarcinogenic effects of concurrent exposure of 1,2-DCP and the other halogen solvents to which workers with cholangiocarcinomas were exposed.


Subject(s)
Bile Duct Neoplasms/chemically induced , Cholangiocarcinoma/chemically induced , Nitrosamines , Propane/analogs & derivatives , Animals , Disease Models, Animal , Male , Mesocricetus , Occupational Exposure/adverse effects , Propane/adverse effects , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...