Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(29): 16210-16217, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37458997

ABSTRACT

Natural biological materials are formed by self-assembly processes and catalyze a myriad of reactions. Here, we report a programmable molecular assembly of designed synthetic polymers with engineered bacterial spores. This self-assembly process is driven by dynamic covalent bond formation on spore surface glycan and yields macroscopic materials that are structurally stable, self-healing, and recyclable. Molecular programming of polymer species shapes the physical properties of these materials while metabolically dormant spores allow for prolonged ambient storage. Incorporation of spores with genetically encoded functionalities enables operationally simple and repeated enzymatic catalysis. Our work combines molecular and genetic engineering to offer scalable and programmable synthesis of robust materials for sustainable biocatalysis.


Subject(s)
Polymers , Spores, Bacterial , Spores, Bacterial/genetics , Spores, Bacterial/chemistry , Polymers/chemistry , Catalysis , Biocatalysis , Genetic Engineering
2.
J Am Chem Soc ; 144(27): 12081-12091, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35767838

ABSTRACT

Contrary to prevailing thought, the salt content of supernatants is found to dictate reactivity differences of different preparation methods of Rieke zinc toward oxidative addition of organohalides. This conclusion is established through combined single-particle microscopy and ensemble spectroscopy experiments, coupled with careful removal or keeping of the supernatants during Rieke zinc preparations. Fluorescence microscopy experiments with single-Rieke-zinc-particle resolution determined the microscale surface reactivity of the Rieke zinc in the absence of supernatants, thus pinpointing its inherent reactivity independent of the convoluting supernatant composition. In parallel experiments, scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-mass spectrometry characterized the zinc metal chemical composition at the bulk and single-particle levels. Proton nuclear magnetic resonance spectroscopy kinetics characterized bench-scale Rieke zinc reactivity in the presence and absence of different supernatants and exogenous salt additives. Together, these experiments show that the differences in reactivity from sodium-reduced vs lithium-reduced Rieke zinc arise from the residual salts in the supernatant rather than the differing salt compositions of the solids. This supernatant salt also determines the structure of the ultimate organozinc product, generating either the diorganozinc or monoorganozinc halide complex. That different organozinc complexes formed upon direct insertion to different preparations of Rieke zinc was not previously reported, despite Rieke zinc's widespread use. These findings impact organozinc-reagent and nanomaterial synthesis by showing that, unexpectedly, desired Rieke zinc reactivity can be achieved through simple addition of soluble salts to solutions that were used to prepare the metals─a substantially easier synthetic manipulation than solid composition and morphology control.


Subject(s)
Salts , Zinc , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission/methods , Zinc/chemistry
3.
J Org Chem ; 87(5): 3498-3510, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35133155

ABSTRACT

Photoredox catalysis has become a powerful method to generate free radical intermediates in organic synthesis. This report describes the use of photoredox catalysis to directly oxidize common nucleophilic anions to access electrophilic 1,3-dicarbonyl and amidyl radical intermediates. First, conjugate bases of 1,3-dicarbonyls were oxidized to neutral radical species for intramolecular hydro- and dialkylation of alkenes. This overall redox-neutral process provided cyclopentanone products in excellent yields (up to 96%). The scope included a variety of styrene radical acceptors and products with newly formed vicinal quaternary carbons. This process was then extended to the synthesis of pyrrolidinones by alkene amidoalkylation that proceeded via N-aryl amidyl radical intermediates in good yield (up to 85%). These reactions were characterized by their mild conditions, high atom economy, and the absence of stoichiometric byproducts. Mechanistic and computational studies supported a stepwise proton-coupled electron transfer mechanism, where an "electron borrowing" photocatalyst oxidizes an anion and reduces a benzylic radical after bond formation.


Subject(s)
Alkenes , Protons , Alkenes/chemistry , Anions , Catalysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...