Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614383

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Subject(s)
Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
2.
J Pharmacol Sci ; 151(2): 119-127, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36707177

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that is characterized by vascular remodeling of the pulmonary artery. PAH remodeling is primarily caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs). Therefore, an inhibitory mechanism is expected as a target for the treatment of PAH. Corosolic acid (CRA) is a pentacyclic triterpenoid extracted from the leaves of Banaba (Lagerstroemia speciosa) that exerts anti-diabetic, anti-inflammatory, and anti-tumor effects. In the present study, the effects of CRA on PAH remodeling were examined using PASMCs from idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline (MCT)-induced pulmonary hypertensive (PH) rats. CRA inhibited the excessive proliferation of IPAH-PASMCs in a concentration-dependent manner (IC50 = 14.1 µM). It also reduced the migration of IPAH-PASMCs. The CRA treatment downregulated the expression of signal transducer and activator of transcription 3 (STAT3) in IPAH-PASMCs. In MCT-PH rats, the administration of CRA (1 mg/kg/day) attenuated increases in right ventricular systolic pressure, pulmonary vascular remodeling, and right ventricular hypertrophy. CRA also decreased the expression of STAT3 in pulmonary arterial smooth muscles from MCT-PH rats. In conclusion, the anti-proliferative and anti-migratory effects of CRA in PASMCs ameliorated PAH remodeling by downregulating STAT3 signaling pathways.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Familial Primary Pulmonary Hypertension/metabolism , Familial Primary Pulmonary Hypertension/pathology , Hypertension, Pulmonary/metabolism , Down-Regulation , Vascular Remodeling , STAT3 Transcription Factor/metabolism , Pulmonary Artery , Myocytes, Smooth Muscle , Cell Proliferation
3.
Biochem Biophys Res Commun ; 607: 44-48, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35366542

ABSTRACT

In pulmonary arterial smooth muscle cells (PASMCs), an increase in the cytosolic Ca2+ concentration ([Ca2+]cyt) is involved in many physiological processes such as cell contraction and proliferation. However, chronic [Ca2+]cyt increases cause pulmonary vasoconstriction and vascular remodeling, resulting in pulmonary arterial hypertension (PAH). Therefore, [Ca2+]cyt signaling plays a substantial role in the regulation of physiological and pathological functions in PASMCs. In the present study, the effects of SKF96365 on [Ca2+]cyt were examined in PASMCs from normal subjects and idiopathic pulmonary arterial hypertension (IPAH) patients. SKF96365 is widely used as a blocker of non-selective cation channels. SKF96365 did not affect the resting [Ca2+]cyt in normal-PASMCs. However, SKF96365 increased [Ca2+]cyt in IPAH-PASMCs in a concentration-dependent manner (EC50 = 18 µM). The expression of Ca2+-sensing receptors (CaSRs) was higher in IPAH-PASMCs than in normal-PASMCs. The SKF96365-induced [Ca2+]cyt increase was inhibited by CaSR antagonists, NPS2143 and Calhex 231. The CaSR-mediated [Ca2+]cyt increase was facilitated by SKF96365 and the activation was blocked by NPS2143 or Calhex 231. In addition, the SKF96365-induced [Ca2+]cyt increase was reduced by siRNA knockdown of CaSRs. Taken together, SKF96365 activates CaSRs in IPAH-PASMCs and promotes [Ca2+]cyt signaling.


Subject(s)
Hypertension, Pulmonary , Receptors, Calcium-Sensing , Calcium/metabolism , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension/pathology , Humans , Hypertension, Pulmonary/metabolism , Imidazoles , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/pathology , Receptors, Calcium-Sensing/metabolism
4.
J Pharmacol Sci ; 147(1): 81-85, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294376

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare, progressive, and fatal cardiovascular/lung disease. The incidence rate is affected by age. Monocrotaline (MCT, 60 mg/kg)-treated rats are widely used as an experimental PAH model. Here, we found that young rats died at a mean of 23.4 days after MCT injection, whereas adult rats survived for over 42 days. However, young (7-week-old) and adult (20-week-old) MCT-treated rats developed PAH, and had upregulated Ca2+-sensing receptor and transient receptor potential canonical subfamily 6 channel expression in pulmonary arteries. The present study provides novel information for elucidating the mechanism underlying the age difference in PAH patients.


Subject(s)
Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Adult , Age Factors , Animals , Calcium Channels/metabolism , Disease Models, Animal , Female , Humans , Hypertension, Pulmonary/chemically induced , Male , Middle Aged , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Receptors, Calcium-Sensing/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...