Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 315: 120457, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36270564

ABSTRACT

Numerous recent studies have documented ingestion of microplastics (MPs) by many aquatic animals, yet an explanation for misfeeding by fish remains unexplained. Here we tested the hypothesis that biofilm (biofouling) on MP surfaces due to exposure in the aquatic environment facilitates misfeeding in fish. Spherical polystyrene (PS) was cultured for 0-22 weeks in a freshwater environment to grow a biofilm on the MPs. Goldfish were employed in a simple feeding experiment with and without provision of genuine food at ecologically relevant MP concentrations. Absorbance (ABS), which is a proxy for biofilm formation, increased exponentially within three weeks of initiation and reached a plateau after approximately five weeks. Although fish did not swallow the MPs, "capture" occurred when food pellets were in the vicinity and significantly increased in probability with aging. Duration of capture also increased significantly with increasing aging. These results suggest that drifting of MPs in aquatic environments may facilitate fish misidentification of MPs as edible prey.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Water Pollutants, Chemical/analysis , Fishes , Environmental Pollution
2.
Mar Pollut Bull ; 169: 112563, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34089965

ABSTRACT

Microplastics in the ocean are threatening marine ecosystems. Although plastic contaminants are ubiquitous, their distribution is thought to be heterogeneous. Here, we elucidate the spatial and temporal variations in the quanti-qualitative characteristics of microplastics near Kyushu, Japan in the East China Sea. Six surveys across nine stations were conducted over a 14-month period, and a total of 6131 plastic items were identified. The average microplastic abundance and size were 0.49 ± 0.92 (items·m-3 ± S.D.), and 1.71 ± 0.93 (mm ± S.D.), respectively. Differences between the highest and lowest abundances were 50-fold among monthly means, and 550-fold across all net tows. With respect to colour, polymer type, and shape, white and transparent polyethylene fragments were the dominant composition. There were significant differences for each of the analytical microplastic parameters among the survey months. Our results provide baseline data and lead to a more comprehensive understanding of the spatiotemporal characteristics of microplastic pollution.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Japan , Plastics , Water , Water Pollutants, Chemical/analysis
3.
Appl Environ Microbiol ; 75(17): 5536-43, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19592534

ABSTRACT

(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter(-1)) rather than GGOH (0.2 mg liter(-1)) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter(-1) GGOH and 6.5 mg liter(-1) squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter(-1) GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.


Subject(s)
Biosynthetic Pathways/genetics , Diterpenes/metabolism , Genetic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Squalene/metabolism
4.
Biochem Biophys Res Commun ; 290(1): 475-81, 2002 Jan 11.
Article in English | MEDLINE | ID: mdl-11779195

ABSTRACT

Hepatocyte growth factor (HGF) plays a crucial role in the recovery of injured liver. Liver functions are mostly impaired in patients with liver diseases including cirrhosis. However, a significant amount of inactive HGF precursor (proHGF) is reported in the plasma of these patients. proHGF is proteolytically converted to an active form (mature HGF) by HGF-activator. Thus conversion of proHGF into mature HGF presumably contributes to the recovery of liver functions. In this study, rats with a partial hepatectomy were used, as proHGF is accumulated in the remnant liver. Recombinant human HGF-activator was administered via the portal vein to investigate the effect on molecular forms of HGF and its biological signaling. rhHGF-activator promptly converted proHGF into mature HGF, reaching maximal levels at 5-10 min after the injection, while the decreased proHGF was quickly recovered to the initial levels in the liver. The HGF receptor/c-Met was found to be autophosphorylated in the liver treated with rhHGF-activator. Further, the proliferating cell nuclear antigen labeling index and the liver regeneration rate were significantly higher in rhHGF-activator group than in control animals. These results indicate that exogenously administered HGF-activator produces a biologically active HGF from its precursor form and increases the potential for liver regeneration in vivo.


Subject(s)
Hepatocyte Growth Factor/biosynthesis , Liver/physiology , Serine Endopeptidases/metabolism , Serine Endopeptidases/pharmacology , Animals , Blotting, Western , Cell Division , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Hepatectomy , Hepatocyte Growth Factor/blood , Humans , Liver/metabolism , Phosphorylation , Precipitin Tests , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Regeneration , Signal Transduction , Time Factors
5.
J Biol Chem ; 277(16): 14053-9, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11805118

ABSTRACT

Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.


Subject(s)
Membrane Glycoproteins/chemistry , Animals , CHO Cells , COS Cells , Cricetinae , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Gene Deletion , Immunoblotting , Membrane Glycoproteins/metabolism , Microscopy, Fluorescence , Mutation , Plasmids/metabolism , Point Mutation , Protein Binding , Protein Structure, Tertiary , Proteinase Inhibitory Proteins, Secretory , Serine Endopeptidases/metabolism , Transfection , Trypsin/chemistry , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...