Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038133

ABSTRACT

Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.


Subject(s)
Communicable Diseases , Influenza A virus , Influenza Vaccines , Animals , Mice , Hemagglutinins , Antibodies, Viral , Immunization , Vaccination , Adjuvants, Immunologic/pharmacology , Immunity, Mucosal , Influenza A virus/genetics , Immunoglobulin G
2.
Biochem Biophys Res Commun ; 686: 149143, 2023 12 17.
Article in English | MEDLINE | ID: mdl-37926041

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory illness worldwide, particularly in infants and older adults. Vaccines targeting the fusion glycoprotein (F protein) -one of the surface antigens of RSV- are highly effective in preventing RSV-associated severe lower respiratory tract disease. However, the efficacy of these vaccines against upper respiratory tract challenge needs improvement. Here, we aimed to examine the efficacy of F protein vaccines with or without CpG oligodeoxynucleotide (CpG ODN) as an adjuvant in the upper and lower respiratory tracts in mice. F + CpG ODN induced higher levels of F-specific IgG than that induced by F alone; however, levels of neutralizing antibodies did not increase compared to those induced by F alone. F + CpG ODN induced T helper 1 (Th1) cells while F alone induced T helper 2 (Th2) cells. Moreover, F + CpG ODN improved the protection against RSV challenge in the upper respiratory tract compared to F alone, which was largely dependent on CD4+ T cells. Meanwhile, both F + CpG ODN and F alone protected the lower respiratory tract. In conclusion, we demonstrated that induction of F-specific Th1 cells is an effective strategy to prevent RSV challenge in the upper respiratory tract in F protein vaccines. These data support the development of novel F protein vaccines.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Vaccines , Mice , Humans , Animals , Aged , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Viral , Antibodies, Neutralizing , Th1 Cells , Nose , Oligodeoxyribonucleotides , Mice, Inbred BALB C
3.
Front Immunol ; 14: 1282016, 2023.
Article in English | MEDLINE | ID: mdl-38169867

ABSTRACT

Introduction: Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods: Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results: mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion: These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.


Subject(s)
Eosinophilia , Pneumonia , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Vaccines , Mice , Animals , Antibodies, Viral , Viral Fusion Proteins , Adjuvants, Immunologic , Recombinant Proteins , Eosinophilia/prevention & control , GTP-Binding Proteins , Oligodeoxyribonucleotides , Glycoproteins , Vaccines, Combined , Mammals
4.
J Immunol ; 208(3): 642-650, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34996840

ABSTRACT

TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytokine Receptor gp130/metabolism , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cell Proliferation , Hypersensitivity, Delayed/immunology , Interleukin-10/immunology , Interleukins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 3 Protein/metabolism , T-Box Domain Proteins/metabolism , TNF Receptor-Associated Factor 5/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...