Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
J Biochem ; 175(6): 671-676, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38302756

ABSTRACT

Crystal structure of a ribonuclease for ribosomal RNA processing, FAU-1, from Pyrococcus furiosus was determined with the resolution of 2.57 Å in a homo-trimeric form. The monomer structure consists of two domains: N-terminal and C-terminal domains. C-terminal domain forms trimer and each N-terminal domain locates outside of the trimer core. In the obtained crystal, a dinucleotide, pApUp, was bound to the N-terminal domain, indicating that N-terminal domain has the RNA-binding ability. The affinities to RNA of FAU-1 and a fragment corresponding to the N-terminal domain, FAU-ΔC, were confirmed by polyacrylamide gel electrophoresis and nuclear magnetic resonance (NMR). Interestingly, well-dispersed NMR signals were observed at 318K, indicating that the FAU-ΔC-F18 complex form an ordered structure at higher temperature. As predicted in our previous works, FAU-1 and ribonuclease (RNase) E show a structural similarity in their RNA-binding regions. However, structural similarity between RNase E and FAU-1 could be found in the limited regions of the N-terminal domain. On the other hand, structural similarity between C-terminal domain and some proteins including a phosphatase was found. Thus, it is possible that the catalytic site is located in C-terminal domain.


Subject(s)
Pyrococcus furiosus , Pyrococcus furiosus/enzymology , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , Models, Molecular , Crystallography, X-Ray , Ribonucleases/metabolism , Ribonucleases/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Protein Conformation , Protein Multimerization
2.
J Virol ; 98(2): e0182523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289105

ABSTRACT

Unspliced HIV-1 RNAs function as messenger RNAs for Gag or Gag-Pol polyproteins and progeny genomes packaged into virus particles. Recently, it has been reported that fate of the RNAs might be primarily determined, depending on transcriptional initiation sites among three consecutive deoxyguanosine residues (GGG tract) downstream of TATA-box in the 5' long terminal repeat (LTR). Although HIV-1 RNA transcription starts mostly from the first deoxyguanosine of the GGG tract and often from the second or third deoxyguanosine, RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine, were predominant in HIV-1 particles. Despite selective packaging of G1-form RNAs into virus particles, its biological impact during viral replication remains to be determined. In this study, we revealed that G1-form RNAs are primarily selected as a template for provirus DNA rather than other RNAs. In competitions between HIV-1 and lentiviral vector transcripts in virus-producing cells, approximately 80% of infectious particles were found to generate provirus using HIV-1 transcripts, while lentiviral vector transcripts were conversely selected when we used HIV-1 mutants in which the third deoxyguanosine in the GGG tract was replaced with deoxythymidine or deoxycytidine (GGT or GGC mutants, respectively). In the other analyses of proviral sequences after infection with an HIV-1 mutant in which the GGG tract in 3' LTR was replaced with TTT, most proviral sequences of the GGG-tract region in 5' LTR were found to be TTG, which is reasonably generated using the G1-form transcripts. Our results indicate that the G1-form RNAs serve as a dominant genome to establish provirus DNA.IMPORTANCESince the promoter for transcribing HIV-1 RNA is unique, all viral elements including genomic RNA and viral proteins have to be generated by the unique transcripts through ingenious mechanisms including RNA splicing and frameshifting during protein translation. Previous studies suggested a new mechanism for diversification of HIV-1 RNA functions by heterogeneous transcriptional initiation site usage; HIV-1 RNAs whose transcription initiates from a certain nucleotide were predominant in virus particles. In this study, we established two methods to analyze heterogenous transcriptional initiation site usage by HIV-1 during viral infection and showed that RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine of the GGG tract in 5' LTR, were primarily selected as viral genome in infectious particles and thus are used as a template to generate provirus for continuous replication. This study provides insights into the mechanism for diversification of unspliced RNA functions and requisites of lentivirus infectivity.


Subject(s)
HIV-1 , Proviruses , Deoxyguanosine/genetics , Guanosine/genetics , HIV Long Terminal Repeat/genetics , HIV-1/physiology , Proviruses/genetics , RNA, Viral/genetics , Terminal Repeat Sequences
3.
Biochem Biophys Res Commun ; 691: 149327, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38039839

ABSTRACT

Although structures of many RNA loops, such as GNRA and UNCG tetraloops, were well known, it is still possible to find more RNA structures. In the present study, solution structure of an RNA fragment having UUCGA pentaloop was analyzed by NMR spectroscopy. It was found that the UUCG tetraloop is formed and the adenosine residue at the 3' side of the tetraloop is bulged out. The characteristic motif of the loop-bulge structure has also been found in other RNAs including CUUGU and CUGGC pentaloops. Along with the recently found T-hairpin structure with a UUUGAUU loop, in which UUUGA pentaloop and UU bulge are formed, the loop-bulge structures can be categorized as an RNA motif and it may be called as the integrated structure loop, I-loop.


Subject(s)
RNA , Nucleic Acid Conformation , RNA/chemistry , Nucleotide Motifs , Magnetic Resonance Spectroscopy
4.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 11): 278-284, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37873935

ABSTRACT

Adenylosuccinate lyase (PurB) catalyzes two distinct reactions in the purine nucleotide biosynthetic pathway using the same active site. The ability to recognize two different sets of substrates is of structural and evolutionary interest. In the present study, the crystal structure of PurB from the thermophilic bacterium Thermus thermophilus HB8 (TtPurB) was determined at a resolution of 2.38 Šby molecular replacement using a structure predicted by AlphaFold2 as a template. The asymmetric unit of the TtPurB crystal contained two TtPurB molecules, and some regions were disordered in the crystal structure. The disordered regions were the substrate-binding site and domain 3. TtPurB forms a homotetramer and the monomer is composed of three domains (domains 1, 2 and 3), which is a typical structure for the aspartase/fumarase superfamily. Molecular dynamics simulations with and without substrate/product were performed using a full-length model of TtPurB which was obtained before deletion of the disordered regions. The substrates and products were bound to the model structures during the MD simulations. The fluctuations of amino-acid residues were greater in the disordered regions and became smaller upon the binding of substrate or product. These results demonstrate that the full-length model obtained using AlphaFold2 can be used to generate the coordinates of disordered regions within the crystal structure.


Subject(s)
Adenylosuccinate Lyase , Adenylosuccinate Lyase/genetics , Adenylosuccinate Lyase/chemistry , Adenylosuccinate Lyase/metabolism , Amino Acid Sequence , Thermus thermophilus , Sequence Homology, Amino Acid , Crystallography, X-Ray
5.
J Am Chem Soc ; 145(37): 20432-20441, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37677157

ABSTRACT

XenoAptamers are DNA fragments containing additional letters (unnatural bases, UBs) that bind specifically to their target proteins with high affinities (sub-nanomolar KD values). One of the UBs is the highly hydrophobic 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), which significantly increases XenoAptamers' affinities to targets. Originally, Ds was developed as a third base pair with a complementary UB, 2-nitro-4-propynylpyrrole (Px), for replication, and thus it can be used for aptamer generation by an evolutional engineering method involving PCR amplification. However, it is unclear whether the Ds base is the best component as the hydrophobic fifth-letter ligand for interactions with target proteins. To optimize the ligand structure of the fifth letter, we prepared 13 Ds variants and examined the affinities of XenoAptamers containing these variants to target proteins. The results obtained using four XenoAptamers prepared by the replacement of Ds bases with variants indicated that subtle changes in the chemical structure of Ds significantly affect the XenoAptamer affinities. Among the variants, placing either 4-(2-thienyl)pyrrolo[2,3-b]pyridine (Ys) or 4-(2-thienyl)benzimidazole (Bs) at specific Ds positions in each original XenoAptamer greatly improved their affinities to targets. The Ys and Bs bases are variants derived by replacing only one nitrogen with a carbon in the Ds base. These results demonstrate the strict intramolecular interactions, which are not simple hydrophobic contacts between UBs and targets, thus providing a method to mature XenoAptamers' affinities to targets.


Subject(s)
Biological Evolution , Carbon , Ligands , Engineering , Pyridines
6.
PLoS One ; 18(7): e0288362, 2023.
Article in English | MEDLINE | ID: mdl-37428787

ABSTRACT

MSM/Ms mouse derived from the Japanese wild mouse has unique characteristics compared to the widely used C57BL/6 mouse. To examine the usefulness of the MSM/Ms mouse for the comparative genomic analysis, expression of small RNAs were analyzed by the large-scale sequence analysis for two strains of mouse, C57BL/6 and MSM/Ms. As a trial, expression of box C/D snoRNAs, which are the most abundant small RNAs in the cell, were analyzed. By the comparison of the read number for each fragment, 11 snoRNAs with single nucleotide polymorphisms (SNPs) were detected. One of the snoRNAs, SNORD53, shows the expression only for MSM/Ms and this snoRNA has a mutation in the box sequence in C57BL/6. Thus, it was demonstrated that the proposed experimental system using SNPs can give new insight for the gene expression regulation.


Subject(s)
RNA, Small Nucleolar , Sexual and Gender Minorities , Humans , Animals , Mice , Male , RNA, Small Nucleolar/genetics , Base Sequence , Polymorphism, Single Nucleotide , Homosexuality, Male , Mice, Inbred C57BL
7.
J Gen Appl Microbiol ; 69(2): 131-134, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37271520

ABSTRACT

To complete the ThermusQ database, small non-coding RNAs (ncRNAs) and functional RNA elements found in Thermus thermophilus were summarized with annotations. The well-known three ncRNAs, M1 RNA, tmRNA and SRP RNA, were annotated as ttj8_nc001 to ttj8_nc003, and 10 novel RNAs were annotated as ttj8_nc004 to ttj8_nc013. Antisense RNAs for some ORFs were annotated as ttj8_EST00001 to ttj8_EST00006. In addition, a set of conserved sequences found in T. thermophilus HB27 were also described.


Subject(s)
RNA, Untranslated , Thermus thermophilus , Thermus thermophilus/genetics , RNA, Untranslated/genetics
8.
J Gen Appl Microbiol ; 69(2): 109-116, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37302828

ABSTRACT

Adenylosuccinate synthetase (PurA) is an enzyme responsible for the nitrogen addition to inosine monophosphate (IMP) by aspartate in the purine nucleotide biosynthetic pathway. And after which the fumarate is removed by adenylosuccinate lyase (PurB), leaving an amino group. There are two other enzymes that catalyze aspartate addition reactions similar to PurA, one in the purine nucleotide biosynthetic pathway (SAICAR synthetase, PurC) and the other in the arginine biosynthetic pathway (argininosuccinate sythetase, ArgG). To investigate the origin of these nitrogen-adding enzymes, PurA from Thermus thermophilus HB8 (TtPurA) was purified and crystallized, and crystal structure complexed with IMP was determined with a resolution of 2.10 Å. TtPurA has a homodimeric structure, and at the dimer interface, Arg135 of one subunit interacts with the IMP bound to the other subunit, suggesting that IMP binding contributes to dimer stability. The different conformation of His41 side chain in TtPurA and EcPurA suggests that side chain flipping of the His41 might play an important role in orienting γ-phosphate of GTP close to oxygen at position 6 of IMP, to receive the nucleophilic attack. Moreover, through comparison of the three-dimensional structures and active sites of PurA, PurC, and ArgG, it was suggested that the active sites of PurA and PurC converged to similar structures for performing similar reactions.


Subject(s)
Adenylosuccinate Synthase , Aspartic Acid , Adenylosuccinate Synthase/genetics , Adenylosuccinate Synthase/chemistry , Adenylosuccinate Synthase/metabolism , Aspartic Acid/metabolism , Biosynthetic Pathways , Purine Nucleotides/metabolism
9.
Front Mol Biosci ; 10: 1145528, 2023.
Article in English | MEDLINE | ID: mdl-36999159

ABSTRACT

RNA-targeted small molecules are a promising modality in drug discovery. Recently, we found that a fluoroquinolone derivative, KG022, can bind to RNAs with bulged C or G. To clarify the RNA specificity of KG022, we analyzed the effect of the base pair located at the 3'side of the bulged residue. It was found that KG022 prefers G-C and A-U base pairs at the 3'side. Solution structures of the complexes of KG022 with the four RNA molecules with bulged C or G and G-C or A-U base pairs at the 3'side of the bulged residue were determined to find that the fluoroquinolone moiety is located between two purine bases, and this may be the mechanism of the specificity. This work provides an important example of the specificity of RNA-targeted small molecules.

10.
Life (Basel) ; 12(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35207568

ABSTRACT

The second step in the de novo biosynthetic pathway of purine is catalyzed by PurD, which consumes an ATP molecule to produce glycinamide ribonucleotide (GAR) from glycine and phosphoribosylamine (PRA). PurD initially reacts with ATP to produce an intermediate, glycyl-phosphate, which then reacts with PRA to produce GAR. The structure of the glycyl-phosphate intermediate bound to PurD has not been determined. Therefore, the detailed reaction mechanism at the molecular level is unclear. Here, we developed a computational protocol to analyze the free-energy profile for the glycine phosphorylation process catalyzed by PurD, which examines the free-energy change along a minimum energy path based on a perturbation method combined with the quantum mechanics and molecular mechanics hybrid model. Further analysis revealed that during the formation of glycyl-phosphate, the partial atomic charge distribution within the substrate molecules was not localized according to the formal charges, but was delocalized overall, which contributed significantly to the interaction with the charged amino acid residues in the ATP-grasp domain of PurD.

11.
Chemistry ; 28(16): e202104396, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35133046

ABSTRACT

Light-emitting systems using an RNA aptamer-dye pair, such as Spinach RNA, are an attractive method for imaging and tracing RNA expression in vitro and in vivo. We present an alternative Spinach method by genetic alphabet expansion using an unnatural base pair system, in which a dye-conjugated unnatural base substrate is site-specifically incorporated at a specific position in Spinach RNA by transcription involving the third base pair. The incorporation position was predicted by molecular dynamics simulations. This dye-conjugated Spinach RNA increased the thermal stability of the fluorescence, the robustness against ion sensitivity, and the resistance against photobleaching. Furthermore, we applied our method to Baby Spinach, a shorter version of Spinach, for dye conjugation toward the visible detection of transcripts. This is the first demonstration of an alternative RNA imaging method for a detection system using genetic alphabet expansion.


Subject(s)
Aptamers, Nucleotide , RNA , Aptamers, Nucleotide/chemistry , Base Pairing , RNA/genetics , Spinacia oleracea/genetics , Spinacia oleracea/metabolism
12.
RNA ; 28(4): 541-550, 2022 04.
Article in English | MEDLINE | ID: mdl-34987083

ABSTRACT

PIWI-interacting RNAs (piRNAs) repress transposons to protect the germline genome from DNA damage caused by transposon transposition. In Drosophila, the Traffic jam (Tj) mRNA is consumed to produce piRNA in its 3'-UTR. A cis element located within the 3'-UTR, Tj-cis, is necessary for piRNA biogenesis. In this study, we analyzed the structure of the Tj-cis RNA, a 100-nt RNA corresponding to the Tj-cis element, by the SHAPE and NMR analyses and found that a stable hairpin structure formed in the 5' half of the Tj-cis RNA. The tertiary structure of the 16-nt stable hairpin was analyzed by NMR, and a novel stem-loop structure, the T-hairpin, was found. In the T-hairpin, four uridine residues are exposed to the solvent, suggesting that this stem-loop is the target of Yb protein, a Tudor domain-containing piRNA biogenesis factor. The piRNA biogenesis assay showed that both the T-hairpin and the 3' half are required for the function of the Tj-cis element, suggesting that both the T-hairpin and the 3' half are recognized by Yb protein.


Subject(s)
Drosophila Proteins , Animals , DNA Transposable Elements , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
13.
J Biochem ; 171(2): 239-244, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34791286

ABSTRACT

Interaction analysis between small molecules and RNA as well as structure determination of RNA-small molecule complexes will be the clues to search for compounds that bind to specific mRNA or non-coding RNA in drug discovery. In this study, the RNA-binding ability of a fluoroquinolone derivative, KG022, was examined against single-residue bulge-containing hairpin RNAs as RNA models. Nuclear magnetic resonance analysis indicated that KG022 interacts with the RNAs in the vicinity of the bulge residue, with preferring C and G as the bulge residues. The solution structures of the RNA-KG022 complexes showed that the KG022 binds to the RNAs at the bulge-out regions. Each substituent in KG022 interacts with specific position of RNAs around the bulge-out region probably contributing the specificity of the binding. This work provides a novel member for the RNA-targeted small molecules.


Subject(s)
Fluoroquinolones , RNA , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Messenger
14.
J Org Chem ; 87(1): 340-350, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34937340

ABSTRACT

Small molecules targeting DNA regions with structural fluctuation are an important class of molecule as chemical probes for studying the role of these structures in biological systems and the development of neurological disorders. The molecule ANP77 we described here, where a three-atom linker connects two 2-amino-1,8-naphthyridines at the C7 position, was found to form stacked structure with protonation of naphthyridine at low pH, and bound to the internal loop consisting of C/CC and T/CC in double-stranded DNA with affinities of 4.8 and 34.4 nM, respectively. Mass spectrometry and isothermal titration calorimetry analyses determined the stoichiometry for the binding as 1:1, and chemical footprinting with permanganate and NMR structural analysis revealed that the T in the T/CC was forced to flip out toward an extrahelical position upon ANP77 binding. Protonated stacked ANP77 interacted with two adjacent cytosines through hydrogen bonding and occupied the position in the duplex by flipping out the C or T opposite CC. Finally, this study demonstrated the potential of ANP77 for binding to the sequences of biological significance with the TG(T/C)CC repeat of the PIG3 promoter and the telomere repeat CCCTAA.


Subject(s)
DNA , Naphthyridines , Cytosine , Hydrogen Bonding
15.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680070

ABSTRACT

Reverse transcriptase (RT) and integrase (IN) are encoded tandemly in the pol genes of retroviruses. We reported recently that HIV-1 RT and IN need to be supplied as the pol precursor intermediates, in which RT and IN are in fusion form (RTIN) to exert efficient reverse transcription in the context of HIV-1 replication. The mechanism underlying RTIN's effect, however, remains to be elucidated. In this study, we examined the effect of IN fusion on RT during reverse transcription by an in vitro cell-free assay, using recombinant HIV-1 RTIN (rRTIN). We found that, compared to recombinant RT (rRT), rRTIN generated significantly higher cDNAs under physiological concentrations of dNTPs (less than 10 µM), suggesting increased affinity of RTIN to dNTPs. Importantly, the cleavage of RTIN with HIV-1 protease reduced cDNA levels at a low dose of dNTPs. Similarly, sensitivities against RT inhibitors were significantly altered in RTIN form. Finally, analysis of molecular dynamics simulations of RT and RTIN suggested that IN can influence the structural dynamics of the RT active center and the inhibitor binding pockets in cis. Thus, we demonstrated, for the first time, the cis-allosteric regulatory roles of IN in RT structure and enzymatic activity.


Subject(s)
HIV Integrase , HIV Reverse Transcriptase , Allosteric Regulation , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/pharmacology , HIV Integrase/metabolism
16.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575896

ABSTRACT

For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-descent fitting program for obtaining free-energy parameters-the changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), and the melting temperature (Tm)-directly from the experimental melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner) model and a new model that includes length-dependent terms were tested. Both models could fit the standard benchmark data; however, the new model could handle longer sequences better. We developed an updated strategy for fitting the duplex melting data.


Subject(s)
RNA, Double-Stranded/chemistry , Algorithms , Base Pairing , Entropy , Linear Models , Models, Genetic , Models, Statistical , Models, Theoretical , Normal Distribution , Nucleic Acid Conformation , Temperature , Thermodynamics
17.
Sci Rep ; 11(1): 10920, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035384

ABSTRACT

The 5'-UTR of HIV-1 genomic RNA is known to form specific structures and has important functions. There are three 5'-terminal sequences, G1, G2 and G3, with different localizations in the cell and virion particles as well as different efficiencies in translation and reverse transcription reactions. In the present study, the structural characteristics of the joint region between the TAR and PolyA stems was analysed, and it was found that small differences in the 5'-terminus affect the conformational characteristics of the stem-loop structures. In the G1 form, the two stems form a coaxial stem, whereas in the G2 and G3 forms, the two stems are structurally independent of each other. In the case of the G1 form, the 3'-flanking nucleotides of the PolyA stem are included in the stable coaxial stem structure, which may affect the rest of the 5'-UTR structure. This result demonstrates that the local conformation of this functionally key region has an important role in the function of the 5'-UTR.


Subject(s)
HIV-1/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , 5' Untranslated Regions , Models, Molecular , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA Folding
18.
Med Sci (Basel) ; 9(1)2021 03 11.
Article in English | MEDLINE | ID: mdl-33799734

ABSTRACT

The effect of limonoids and spermine (Spm) extracted from yuzu (Citrus junos) seeds on the gut and the brain in a mouse model with Sandhoff disease (SD) was investigated. Wild-type and SD mice were fed a normal diet, or a diet supplemented with limonoid, Spm, or limonoid + Spm for 14-18 weeks, and then 16S rRNA gene amplicon sequencing with extracted DNA from their feces was executed. For SD control mice, intestinal microbiota was mostly composed of Lactobacillus and linked to dysbiosis. For SD and wild-type mice fed with limonoids + Spm or limonoids alone, intestinal microbiota was rich in mucin-degrading bacteria, including Bacteroidetes, Verrucomicrobia, and Firmicutes, and displayed a higher production of short-chain fatty acids and immunoglobulin A. Additionally, SD mice fed with limonoids + Spm or limonoids alone had less inflammation in hypothalamic tissues and displayed a greater number of neurons. Administration of limonoids and/or Spm improved the proportions of beneficial intestinal microbiota to host health and reduced neuronal degeneration in SD mice. Yuzu seed limonoids and Spermine may help to maintain the homeostasis of intestinal microbiota and hypothalamic tissue in the SD mouse model.


Subject(s)
Citrus , Gastrointestinal Microbiome , Sandhoff Disease , Animals , Disease Models, Animal , Gastrointestinal Microbiome/genetics , Limonins , Mice , RNA, Ribosomal, 16S , Spermine
19.
Biochem Biophys Res Commun ; 557: 104-109, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862452

ABSTRACT

Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , RNA Processing, Post-Transcriptional , RNA/metabolism , Ribonucleoproteins/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Protein Isoforms , RNA/chemistry , RNA/genetics , Ribonucleoproteins/genetics
20.
Nat Commun ; 12(1): 236, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431896

ABSTRACT

Synthetic small molecules modulating RNA structure and function have therapeutic potential for RNA diseases. Here we report our discovery that naphthyridine carbamate dimer (NCD) targets disease-causing r(UGGAA)n repeat RNAs in spinocerebellar ataxia type 31 (SCA31). Structural analysis of the NCD-UGGAA/UGGAA complex by nuclear magnetic resonance (NMR) spectroscopy clarifies the mode of binding that recognizes four guanines in the UGGAA/UGGAA pentad by hydrogen bonding with four naphthyridine moieties of two NCD molecules. Biological studies show that NCD disrupts naturally occurring RNA foci built on r(UGGAA)n repeat RNA known as nuclear stress bodies (nSBs) by interfering with RNA-protein interactions resulting in the suppression of nSB-mediated splicing events. Feeding NCD to larvae of the Drosophila model of SCA31 alleviates the disease phenotype induced by toxic r(UGGAA)n repeat RNA. These studies demonstrate that small molecules targeting toxic repeat RNAs are a promising chemical tool for studies on repeat expansion diseases.


Subject(s)
Drosophila/genetics , RNA/genetics , Animals , Base Sequence , Cell Nucleus/metabolism , Disease Models, Animal , HeLa Cells , Humans , Introns/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Nucleic Acid Conformation , Phenotype , Phosphorylation , RNA-Binding Proteins/metabolism , Small Molecule Libraries/pharmacology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...