Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(12): 8554-8565, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33848148

ABSTRACT

The redox state of the metallomonooxygenases is finely tuned by imposing specific coordination environments on the metal center to reduce the activation energy for the generation of active-oxygen species and subsequent substrate oxygenation reactions. In this study, copper(II) complexes supported by a series of linear tetradentate ligands consisting of a rigid 6-, 7-, or 8-membered cyclic diamine with two pyridylmethyl (-CH2Py) side arms (L6Pym2, L7Pym2, and L8Pym2) are employed to examine the effects of the coordination environment on the reactivity of their acylperoxide adduct complexes. The UV-vis and electron paramagnetic resonance spectroscopic data indicate that the ligand-field splitting between the dx2-y2 and dz2 orbitals of the starting copper(II) complexes increase with an increase of the ring size of the diamine moiety (L6Pym2 → L7Pym2 → L8Pym2). In the reaction of these copper(II) complexes with m-chloroperbenzoic acid (m-CPBA), the L6Pym2 complex gives a stable m-CPBA adduct complex, whereas the L7Pym2 and L8Pym2 complexes are immediately converted to the corresponding m-chlorobenzoic acid (m-CBA) adducts, indicating that the reactivity of the copper(II) acylperoxide complexes largely depends on the coordination environment induced by the supporting ligands. Density functional theory (DFT) calculations on the m-CPBA adduct complexes show that the ligand-field-splitting energy increases with an increase of the ring size of the diamine moiety, as in the case of the starting copper(II) complexes, which enhances the reactivity of the m-CPBA adduct complexes. The reasons for such different reactivities of the m-CPBA adduct complexes are evaluated by using DFT calculations.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Peroxides/chemistry , Coordination Complexes/chemical synthesis , Density Functional Theory , Ligands , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...