Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 66(3): 906-14, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23219706

ABSTRACT

Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis.


Subject(s)
Biological Evolution , Chlorella/genetics , Genetic Speciation , Hydra/genetics , Phylogeny , Symbiosis/genetics , Animals , Base Sequence , Cluster Analysis , DNA Primers/genetics , DNA, Mitochondrial/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
2.
Gene ; 468(1-2): 30-40, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20708072

ABSTRACT

Among 8000-9000 species of Cnidaria, only several dozens of species of Hydrozoa have been found in the fresh water. Hydra is such a fresh water polyp and has been used as a good material for research in developmental biology, regeneration and pattern formation. Although the genus Hydra has only a few ten species, its distribution is cosmopolitan. The phylogenetic relationship between hydra species is fascinating from the aspect of evolutionary biology and biogeography. However, only a few molecular phylogenetic studies have been reported on hydra. Therefore, we conducted a molecular phylogenetic study of the genus Hydra based on mitochondrial and nuclear nucleotide sequences using a hydra collection that has been kept in the National Institute of Genetics (NIG) of Japan. The results support the idea that four species groups comprise the genus Hydra. Within the viridissima group (green hydra) and braueri group, genetic distances between strains were relatively large. In contrast, genetic distances between strains among the vulgaris and oligactis groups were small irrespective of their geographic distribution. The vulgaris group strains were classified at least (as far as our investigated samples) into three sub-groups, vulgaris sub-group, carnea sub-group, and H. sp. (K5 and K6) sub-group. All of the vulgaris sub-group and H. sp. (K5 and K6) sub-group strains were collected in Eurasia. The carnea sub-group strains in NIG collection were all collected in North America. A few newly collected samples in Japan, however, suggested belonging to the carnea sub-group according to the molecular phylogenic analysis. This suggests a trans-Pacific distribution of the carnea sub-group hydra.


Subject(s)
Hydra/classification , Hydra/genetics , Phylogeny , Amino Acid Substitution/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Likelihood Functions , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...