Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014031

ABSTRACT

Microphthalmia-associated transcription factor (MITF) plays pivotal roles in melanocyte development, function, and melanoma pathogenesis. MITF amplification occurs in melanoma and has been associated with resistance to targeted therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo . Some of the MITF target genes involved, such as IDH1 and NNT , are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state. One Sentence Summary: MITF promote melanoma survival via increasing ROS tolerance.

2.
Nat Metab ; 5(5): 765-776, 2023 05.
Article in English | MEDLINE | ID: mdl-37198474

ABSTRACT

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Subject(s)
Ribose , Uridine , Ribose/metabolism , Uridine/metabolism , RNA/metabolism , Glycolysis , Humans , Cell Line, Tumor , Oxidative Phosphorylation , Culture Media , Glucose , K562 Cells , Cell Proliferation , Pentose Phosphate Pathway
3.
Cell Res ; 33(1): 55-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36588115

ABSTRACT

Microphthalmia transcription factor (MITF) regulates melanocyte development and is the "lineage-specific survival" oncogene of melanoma. MITF is essential for melanoma initiation, progression, and relapse and has been considered an important therapeutic target; however, direct inhibition of MITF through small molecules is considered impossible, due to the absence of a ligand-binding pocket for drug design. Here, our structural analyses show that the structure of MITF is hyperdynamic because of its out-of-register leucine zipper with a 3-residue insertion. The dynamic MITF is highly vulnerable to dimer-disrupting mutations, as we observed that MITF loss-of-function mutations in human Waardenburg syndrome type 2 A are frequently located on the dimer interface and disrupt the dimer forming ability accordingly. These observations suggest a unique opportunity to inhibit MITF with small molecules capable of disrupting the MITF dimer. From a high throughput screening against 654,650 compounds, we discovered compound TT-012, which specifically binds to dynamic MITF and destroys the latter's dimer formation and DNA-binding ability. Using chromatin immunoprecipitation assay and RNA sequencing, we showed that TT-012 inhibits the transcriptional activity of MITF in B16F10 melanoma cells. In addition, TT-012 inhibits the growth of high-MITF melanoma cells, and inhibits the tumor growth and metastasis with tolerable toxicity to liver and immune cells in animal models. Together, this study demonstrates a unique hyperdynamic dimer interface in melanoma oncoprotein MITF, and reveals a novel approach to therapeutically suppress MITF activity.


Subject(s)
Melanoma , Microphthalmos , Animals , Humans , Transcription Factors/metabolism , Microphthalmos/genetics , Melanoma/drug therapy , Melanoma/metabolism , Gene Expression Regulation , Oncogene Proteins/genetics , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233163

ABSTRACT

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , NADP Transhydrogenases/metabolism , Skin Pigmentation/radiation effects , Ultraviolet Rays , Animals , Cell Line , Cohort Studies , Cyclic AMP/metabolism , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Genetic Predisposition to Disease , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanosomes/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , NADP Transhydrogenases/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Polymorphism, Single Nucleotide/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/genetics , Ubiquitin/metabolism , Zebrafish
5.
Cell Chem Biol ; 28(10): 1407-1419.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33794192

ABSTRACT

Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.


Subject(s)
Cholestanetriol 26-Monooxygenase/metabolism , Limonins/pharmacology , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cholestanetriol 26-Monooxygenase/antagonists & inhibitors , Cholestanetriol 26-Monooxygenase/genetics , Humans , Limonins/chemistry , Limonins/metabolism , Limonins/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Interference , RNA, Small Interfering/metabolism
6.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854423

ABSTRACT

Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.


Subject(s)
Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Pigmentation Disorders/metabolism , Cell Differentiation , Humans , Melanins/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Melanoma/drug therapy , Pigmentation Disorders/drug therapy
7.
Pigment Cell Melanoma Res ; 32(2): 303-314, 2019 03.
Article in English | MEDLINE | ID: mdl-30457212

ABSTRACT

RMEL3 is a recently identified lncRNA associated with BRAFV600E mutation and melanoma cell survival. Here, we demonstrate strong and moderate RMEL3 upregulation in BRAF and NRAS mutant melanoma cells, respectively, compared to melanocytes. High expression is also more frequent in cutaneous than in acral/mucosal melanomas, and analysis of an ICGC melanoma dataset showed that mutations in RMEL3 locus are preponderantly C > T substitutions at dipyrimidine sites including CC > TT, typical of UV signature. RMEL3 mutation does not correlate with RMEL3 levels, but does with poor patient survival, in TCGA melanoma dataset. Accordingly, RMEL3 lncRNA levels were significantly reduced in BRAFV600E melanoma cells upon treatment with BRAF or MEK inhibitors, supporting the notion that BRAF-MEK-ERK pathway plays a role to activate RMEL3 gene transcription. RMEL3 overexpression, in immortalized fibroblasts and melanoma cells, increased proliferation and survival under serum starvation, clonogenic ability, and xenografted melanoma tumor growth. Although future studies will be needed to elucidate the mechanistic activities of RMEL3, our data demonstrate that its overexpression bypasses the need of mitogen activation to sustain proliferation/survival of non-transformed cells and suggest an oncogenic role for RMEL3.


Subject(s)
Cytoprotection , Melanoma/genetics , Melanoma/pathology , RNA, Long Noncoding/metabolism , Serum/metabolism , Animals , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells , Cytoprotection/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Proteins/genetics , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , NIH 3T3 Cells , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , RNA, Long Noncoding/genetics
8.
Pigment Cell Melanoma Res ; 32(4): 500-509, 2019 07.
Article in English | MEDLINE | ID: mdl-30548162

ABSTRACT

MITF and MYC are well-known oncoproteins and members of the basic helix-loop-helix leucine zipper (bHLH-Zip) family of transcription factors (TFs) recognizing hexamer E-box motifs. MITF and MYC not only share the core binding motif, but are also the two most highly expressed bHLH-Zip transcription factors in melanocytes, raising the possibility that they may compete for the same binding sites in select oncogenic targets. Mechanisms determining the distinct and potentially overlapping binding modes of these critical oncoproteins remain uncharacterized. We introduce computational predictive models using local sequence features, including a boosted convolutional decision tree framework, to distinguish MITF versus MYC-MAX binding sites with up to 80% accuracy genomewide. Select E-box locations that can be bound by both MITF and MYC-MAX form a separate class of MITF binding sites characterized by differential sequence content in the flanking region, diminished interaction with SOX10, higher evolutionary conservation, and less tissue-specific chromatin organization.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Genome, Human , Microphthalmia-Associated Transcription Factor/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Amino Acid Motifs , Area Under Curve , Base Composition/genetics , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Binding Sites , Epigenesis, Genetic , Humans , Microphthalmia-Associated Transcription Factor/genetics , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , ROC Curve , SOXE Transcription Factors/metabolism
10.
Mol Cell Biol ; 37(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28483914

ABSTRACT

Members of the MiT transcription factor family are pivotal regulators of several lineage-selective differentiation programs. We show that two of these, Tfeb and Tfe3, control the regulator of adipogenesis, peroxisome proliferator-activated receptor γ2 (Pparγ2). Knockdown of Tfeb or Tfe3 expression during in vitro adipogenesis causes dramatic downregulation of Pparγ2 expression as well as adipogenesis. Additionally, we found that these factors regulate Pparγ2 in mature adipocytes. Next, we demonstrated that Tfeb and Tfe3 act directly by binding to consensus E-boxes within the Pparγ transcriptional regulatory region. This transcriptional control also exists in vivo, as we discovered that wild-type mice in the fed state increased their expression of Tfe3, Tf3b, and Pparγ in white adipose tissue. Furthermore, Tfe3 knockout (Tfe3KO) mice in the fed state failed to upregulate Pparγ and the adiponectin gene, a Pparγ-dependent gene, confirming the in vivo role for Tfe3. Lastly, we found that blood glucose is elevated and serum adiponectin levels are suppressed in the Tfe3KO mice, indicating that the Tfe3/Tfeb/Pparγ2 axis may contribute to whole-body energy balance. Thus, we offer new insights into the upstream regulation of Pparγ by Tfe3/Tf3b and propose that targeting these transcription factors may offer opportunities to complement existing approaches for the treatment of diseases that have dysregulated energy metabolism.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , PPAR gamma/genetics , Transcriptional Activation , 3T3-L1 Cells , Adipogenesis , Adiponectin , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/analysis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Energy Metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Up-Regulation
11.
Lab Invest ; 97(6): 649-656, 2017 06.
Article in English | MEDLINE | ID: mdl-28263292

ABSTRACT

Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.


Subject(s)
Melanocytes , Melanoma , Microphthalmia-Associated Transcription Factor , Signal Transduction/physiology , Animals , Humans , Melanocytes/cytology , Melanocytes/metabolism , Melanocytes/physiology , Melanoma/metabolism , Melanoma/physiopathology , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/physiology
12.
J Invest Dermatol ; 136(12): 2342-2344, 2016 12.
Article in English | MEDLINE | ID: mdl-27884291

ABSTRACT

Bioinformatic analysis of genome-wide gene expression allows us to characterize cells, including melanomas. Gene expression profiles have been generated in various stages of melanomas and analyzed by researchers in unique ways. Lauss et al. compared their melanoma subtypes with those of The Cancer Genome Atlas Network and found consistency between the two studies.


Subject(s)
Computational Biology/methods , Melanoma/genetics , Melanoma/therapy , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Prognosis , Risk Assessment , Treatment Outcome
13.
Am J Pathol ; 185(1): 252-65, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25447045

ABSTRACT

Microphthalmia-associated transcription factor (MITF) acts via pigment epithelium-derived factor (PEDF), an antiangiogenic protein, to regulate retinal pigment epithelium migration. PEDF expression and/or regulation during melanoma development have not been investigated previously. Using immunohistochemistry, we determined expression of PEDF in common and dysplastic melanocytic nevi, melanoma in situ, invasive melanoma, and metastatic melanoma (n = 102). PEDF expression was consistently decreased in invasive and metastatic melanoma, compared with nevi and melanoma in situ (P < 0.0001). PEDF was lost in thicker melanomas (P = 0.003), and correlated with depth of invasion (P = 0.003) and distant metastasis (P = 0.0331), but only marginally with mitotic index, AJCC stage, nodal metastasis, or blood vascular density (0.05 < P < 0.10). Quantitative real-time PCR and microarray analyses confirmed PEDF down-regulation at the mRNA level in several melanoma lines, compared with melanocytes. MITF positively correlated with PEDF expression in invasive melanomas (P = 0.0003). Searching for PEDF regulatory mechanisms revealed two occupied conserved E-boxes (DNA recognition elements) in the first intron of the human and mouse PEDF promoter regions, confirmed by binding assays. Dominant-negative and siRNA approaches in vivo demonstrated direct transcriptional influence of MITF on PEDF, establishing the PEDF gene (SERPINF1) as a MITF target in melanocytes and melanoma cells. These findings suggest that loss of PEDF expression promotes early invasive melanoma growth.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Nerve Growth Factors/metabolism , Serpins/metabolism , Skin Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Animals , Base Sequence , Cell Line, Tumor , Female , Gene Silencing , Humans , Immunohistochemistry , Male , Melanocytes , Mice , Microscopy, Fluorescence , Middle Aged , Molecular Sequence Data , Neoplasm Invasiveness , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , RNA, Small Interfering/metabolism , Sequence Homology, Nucleic Acid , Young Adult
14.
Appl Microbiol Biotechnol ; 94(6): 1667-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22573268

ABSTRACT

An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).


Subject(s)
Ethanol/metabolism , Wood/microbiology , Zymomonas/genetics , Zymomonas/metabolism , Cellulose/metabolism , Fermentation , Genetic Engineering , Glucose/metabolism , Hydrolysis , Mannose/metabolism , Wood/chemistry , Wood/metabolism , Xylose/metabolism
16.
Nat Commun ; 2: 414, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21811243

ABSTRACT

The microphthalmia-associated transcription factor (MITF) is essential for melanocyte development. Mutation-induced MAPK pathway activation is common in melanoma and induces MITF phosphorylation, ubiquitination, and proteolysis. Little is known about the enzymes involved in MITF ubiquitination/deubiquitination. Here we report the identification of a deubiquitinating enzyme, named ubiquitin-specific protease 13 (USP13) that appears to be responsible for MITF deubiquitination, utilizing a short hairpin RNA library against known deubiquitinating enzymes. Through deubiquitination, USP13 stabilizes and upregulates MITF protein levels. Conversely, suppression of USP13 (through knockdown) leads to dramatic loss of MITF protein, but not messenger RNA. Through its effects on MITF deubiquitination, USP13 was observed to modulate expression of MITF downstream target genes and, thereby, to be essential for melanoma growth in soft agar and in nude mice. These observations suggest that as a potentially drugable protease, USP13 might be a viable therapeutic target for melanoma.


Subject(s)
Endopeptidases/metabolism , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/chemistry , Cell Line, Tumor , Endopeptidases/genetics , Humans , Melanoma/enzymology , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Ubiquitin-Specific Proteases , Ubiquitination , Up-Regulation
17.
J Dermatol ; 38(5): 432-41, 2011 May.
Article in English | MEDLINE | ID: mdl-21352276

ABSTRACT

How melanosomal proteins such as enzymic proteins (tyrosinase and tyrosinase-related proteins, Tyrps) and structural protein (gp100) are transported from Golgi to melanosomal compartments is not yet fully understood. A number of small GTPases have been found to be associated with melanosomes and we have identified one of them, Rab7, a regulator of vesicular transport, organelle motility, phospholipid signaling and cytosolic degradative machinery, as being involved in the transport of Tyrp1 from Golgi to stage I melanosomes. This study further characterizes the role of Rab7 as a regulator of differential sorting of melanosomal proteins in this process. Murine melanocytes were transiently transfected with a plasmid encoding either wild-type (Rab7WT), constitutively active (Rab7Q67L) or dominant-negative (Rab7N125I and Rab7T22N) Rab7. Through immunocytostaining and confocal laser scanning microscopy, we quantitatively compared the bio-distribution of melanosomal proteins between Rab7WT-expressing cells and mutant Rab7-expressing cells. We also characterized their differential elimination from melanosomal compartments by Rab7 by utilizing a proteasome inhibitor, MG132. Our findings indicate that Rab7 plays an important role in differential sorting of tyrosinase, Tyrp1 and gp100 in early melanogenesis cascade, and that it is more specifically involved with Tyrp1 than tyrosinase and gp100 in the trafficking from Golgi to melanosomes and the specific exit from the degradative process.


Subject(s)
Melanocytes/metabolism , Oxidoreductases/metabolism , rab GTP-Binding Proteins/physiology , Animals , Cells, Cultured , Golgi Apparatus/metabolism , Melanins/biosynthesis , Melanosomes/metabolism , Mice , Monophenol Monooxygenase/metabolism , Protein Transport , Transfection , gp100 Melanoma Antigen/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
19.
J Invest Dermatol ; 128(1): 143-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17625594

ABSTRACT

Melanosome biogenesis consists of multistep processes that involve synthesis of melanosomal protein, which is followed by vesicle transport/fusion and post-translational modifications such as glycosylation, proteolysis, and oligomerization. Because of its complexity, the details of the molecular mechanism of melanosome biogenesis are not yet fully understood. Here, we report that, in MMAc melanoma cells, wild-type (WT) Rab7 and its dominant-active mutant (Rab7-Q67L), but not its dominant-negative mutant (Rab7-T22N), were colocalized in the perinuclear region with granules containing Stage I melanosomes, where the full-length, immature gp100/Pmel17/Silv was present. It was also found that overexpression of Rab7-Q67L and, to a lesser extent, Rab7-WT increased the amount of proteolytically processed, mature gp100. However, Rab7-T22N did not show such an effect. Moreover, siRNA-mediated Rab7 knockdown considerably inhibited gp100 maturation. These results collectively suggest that the GTP-bound form of Rab7 promotes melanogenesis through the regulation of gp100 maturation in melanoma cells.


Subject(s)
Melanosomes/physiology , Membrane Glycoproteins/physiology , rab GTP-Binding Proteins/physiology , Cells, Cultured , Humans , Lysosomal-Associated Membrane Protein 2 , Lysosomal Membrane Proteins/analysis , Melanoma/metabolism , Melanoma/pathology , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Monophenol Monooxygenase/metabolism , Oxidoreductases/metabolism , RNA, Small Interfering/pharmacology , gp100 Melanoma Antigen , rab GTP-Binding Proteins/analysis , rab GTP-Binding Proteins/antagonists & inhibitors , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...