Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Exp Med Biol ; 1444: 67-82, 2024.
Article in English | MEDLINE | ID: mdl-38467973

ABSTRACT

Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.


Subject(s)
Autoimmunity , T-Lymphocytes, Regulatory , Self Tolerance , Immune Tolerance , Gene Expression Regulation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
2.
Immunother Adv ; 3(1): ltad007, 2023.
Article in English | MEDLINE | ID: mdl-37397971

ABSTRACT

FoxP3-expressing regulatory T cells (Tregs), whether naturally generated in the immune system or unnaturally induced from conventional T cells (Tconvs) in the laboratory, have much therapeutic value in treating immunological diseases and establishing transplantation tolerance. Natural Tregs (nTregs) can be selectively expanded in vivo by administration of low-dose IL-2 or IL-2 muteins for immune suppression. For adoptive Treg cell therapy, nTregs can be expanded in vitro by strong antigenic stimulation in the presence of IL-2. Synthetic receptors such as CAR can be expressed in nTregs to equip them with a particular target specificity for suppression. In addition, antigen-specific Tconvs can be converted in vitro to functionally stable Treg-like cells by a combination of antigenic stimulation, FoxP3 induction, and establishment of the Treg-type epigenome. This review discusses current and prospective strategies for Treg-based immune suppression and the issues to be resolved for achieving stable antigen-specific immune suppression and tolerance induction in the clinic by targeting Tregs.

3.
Biol Pharm Bull ; 45(8): 1053-1060, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35613869

ABSTRACT

Combination treatment using fingolimod (FTY720), an immunomodulator, and a pathogenic antigen prevents the progression of glucose-6-phosphate isomerase (GPI)325-339-induced arthritis. In this study, we focused on myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+ cells) and investigated the effects of the combination treatment on these cells. DBA/1J mice with GPI325-339-induced arthritis were treated using FTY720 and/or GPI325-339 for five days. The expanded CD11b+Gr-1+ cell population and its inhibitory potential were examined. The percentage of CD369+CD11b+Gr-1+ cells effectively increased in the combination-treated mice. The inhibitory potential of CD369+CD11b+Gr-1+ cells was higher than that of cells not expressing CD369. Among bone marrow cells, the expression of CD369 in CD11b+Gr-1+ cells increased following stimulation with granulocyte-macrophage colony-stimulating factor, and the expression of CD11c increased accordingly. The increased CD11c expression indicated a decrease in the potential to suppress T cell proliferation based on the results of the suppression assay. The percentage of CD11c-CD369+ cells in CD11b+Gr-1+ cells that were induced by the combination treatment also increased, and these cells tended to have a higher capacity to inhibit T cell proliferation. In conclusion, the combination treatment using FTY720 and the pathogenic antigen effectively induces MDSC, which demonstrates a high potential for suppressing T cell proliferation in the lymph nodes, thereby establishing an immune-tolerant state.


Subject(s)
Arthritis, Rheumatoid , Myeloid-Derived Suppressor Cells , Animals , Antigens , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , CD11b Antigen/metabolism , CD11b Antigen/therapeutic use , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/metabolism
4.
Food Sci Nutr ; 9(6): 3200-3208, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136184

ABSTRACT

FoxP3+ regulatory T cells (Tregs) are needed to suppress inflammatory diseases and maintain immune homeostasis. The suppressive function of Tregs can be used to control autoimmune or inflammatory diseases; therefore, it is well studied how Tregs can be artificially up- or downregulated in vitro and in vivo, by using antibodies, chemical compounds, foods, and natural resources. Propolis is a famous functional food that has an anti-inflammatory effect. However, the influences of propolis on Treg function have not been fully evaluated so far. Here, we demonstrated that Brazilian green propolis increases TNFR2 expression in Tregs via the IRF4/cMyc axis, and artepillin C was a major effective component of propolis on Tregs. These results indicate that propolis and artepillin C have the potential as Treg activators via TNFR2 expression and may be useful for the prevention and/or therapy of autoimmune or inflammatory diseases.

5.
Immunity ; 54(5): 947-961.e8, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33930308

ABSTRACT

The transcription factor Foxp3 plays crucial roles for Treg cell development and function. Conserved non-coding sequences (CNSs) at the Foxp3 locus control Foxp3 transcription, but how they developmentally contribute to Treg cell lineage specification remains obscure. Here, we show that among Foxp3 CNSs, the promoter-upstream CNS0 and the intergenic CNS3, which bind distinct transcription factors, were activated at early stages of thymocyte differentiation prior to Foxp3 promoter activation, with sequential genomic looping bridging these regions and the promoter. While deletion of either CNS0 or CNS3 partially compromised thymic Treg cell generation, deletion of both completely abrogated the generation and impaired the stability of Foxp3 expression in residual Treg cells. As a result, CNS0 and CNS3 double-deleted mice succumbed to lethal systemic autoimmunity and inflammation. Thus, hierarchical and coordinated activation of Foxp3 CNS0 and CNS3 initiates and stabilizes Foxp3 gene expression, thereby crucially controlling Treg cell development, maintenance, and consequently immunological self-tolerance.


Subject(s)
Enhancer Elements, Genetic/immunology , Forkhead Transcription Factors/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Gene Expression Regulation/immunology , Humans , Immune Tolerance/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/immunology , Self Tolerance/immunology
6.
Curr Opin Immunol ; 67: 36-41, 2020 12.
Article in English | MEDLINE | ID: mdl-32827951

ABSTRACT

Naturally occurring FoxP3+CD4+ regulatory T (Treg) cells indispensable for the maintenance of immunological self-tolerance and homeostasis are instrumental in treating autoimmune and other immunological disorders. Stable function of natural Treg cells requires not only the expression of Foxp3 and other Treg signature genes such as CD25 and CTLA-4 but also the generation of Treg-specific epigenetic changes, especially Treg-specific DNA hypomethylation, at these gene loci. Recent studies have shown that the Treg-specific transcriptional and epigenetic changes can be induced in antigen-specific conventional T cells in vivo and in vitro, converting them to functionally stable Treg cells. Such natural or induced Treg cells bear the potential to achieve stable antigen-specific immune suppression and reestablish immunological self-tolerance in treating and preventing autoimmune diseases.


Subject(s)
Autoimmune Diseases/therapy , CD4-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/immunology , Humans
7.
Proc Natl Acad Sci U S A ; 117(22): 12258-12268, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32414925

ABSTRACT

Foxp3-expressing regulatory T cells (Tregs) can be generated in vitro by antigenic stimulation of conventional T cells (Tconvs) in the presence of TGF-ß and IL-2. However, unlike Foxp3+ naturally occurring Tregs, such in vitro induced Tregs (iTregs) are functionally unstable mainly because of incomplete Treg-type epigenetic changes at Treg signature genes such as Foxp3 Here we show that deprivation of CD28 costimulatory signal at an early stage of iTreg generation is able to establish Treg-specific DNA hypomethylation at Treg signature genes. It was achieved, for example, by TCR/TGF-ß/IL-2 stimulation of CD28-deficient Tconvs or CD28-intact Tconvs without anti-CD28 agonistic mAb or with CD80/CD86-blocked or -deficient antigen-presenting cells. The signal abrogation could induce Treg-type hypomethylation in memory/effector as well as naive Tconvs, while hindering Tconv differentiation into effector T cells. Among various cytokines and signal activators/inhibitors, TNF-α and PKC agonists inhibited the hypomethylation. Furthermore, CD28 signal deprivation significantly reduced c-Rel expression in iTregs; and the specific genomic perturbation of a NF-κB binding motif at the Foxp3 CNS2 locus enhanced the locus-specific DNA hypomethylation even in CD28 signaling-intact iTregs. In addition, in vitro maintenance of such epigenome-installed iTregs with IL-2 alone, without additional TGF-ß or antigenic stimulation, enabled their expansion and stabilization of Treg-specific DNA hypomethylation. These iTregs indeed stably expressed Foxp3 after in vivo transfer and effectively suppressed antigen-specific immune responses. Taken together, inhibition of the CD28-PKC-NF-κB signaling pathway in iTreg generation enables de novo acquisition of Treg-specific DNA hypomethylation at Treg signature genes and abundant production of functionally stable antigen-specific iTregs for therapeutic purposes.


Subject(s)
CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , DNA Methylation , Epigenesis, Genetic , Forkhead Transcription Factors/physiology , Gene Expression Regulation , T-Lymphocytes, Regulatory/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cytokines/metabolism , Female , Interleukin-6/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
8.
Sci Immunol ; 4(40)2019 10 25.
Article in English | MEDLINE | ID: mdl-31653719

ABSTRACT

A promising way to restrain hazardous immune responses, such as autoimmune disease and allergy, is to convert disease-mediating T cells into immunosuppressive regulatory T (Treg) cells. Here, we show that chemical inhibition of the cyclin-dependent kinase 8 (CDK8) and CDK19, or knockdown/knockout of the CDK8 or CDK19 gene, is able to induce Foxp3, a key transcription factor controlling Treg cell function, in antigen-stimulated effector/memory as well as naïve CD4+ and CD8+ T cells. The induction was associated with STAT5 activation, independent of TGF-ß action, and not affected by inflammatory cytokines. Furthermore, in vivo administration of a newly developed CDK8/19 inhibitor along with antigen immunization generated functionally stable antigen-specific Foxp3+ Treg cells, which effectively suppressed skin contact hypersensitivity and autoimmune disease in animal models. The results indicate that CDK8/19 is physiologically repressing Foxp3 expression in activated conventional T cells and that its pharmacological inhibition enables conversion of antigen-specific effector/memory T cells into Foxp3+ Treg cells for the treatment of various immunological diseases.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Forkhead Transcription Factors/genetics , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/immunology , Cells, Cultured , Cyclin-Dependent Kinase 8/deficiency , Cyclin-Dependent Kinase 8/immunology , Cyclin-Dependent Kinases/deficiency , Cyclin-Dependent Kinases/immunology , Forkhead Transcription Factors/immunology , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic
9.
Nat Commun ; 10(1): 549, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710091

ABSTRACT

The genome organizer, special AT-rich sequence-binding protein-1 (Satb1), plays a pivotal role in the regulation of global gene networks in a cell type-dependent manner and is indispensable for the development of multiple cell types, including mature CD4+ T, CD8+ T, and Foxp3+ regulatory T cells in the thymus. However, it remains unknown how the differentiation and effector program of the Th subsets in the periphery are regulated by Satb1. Here, we demonstrate that Satb1 differentially regulates gene expression profiles in non-pathogenic and pathogenic Th17 cells and promotes the pathogenic effector program of encephalitogenic Th17 cells by regulating GM-CSF via Bhlhe40 and inhibiting PD-1 expression. However, Satb1 is dispensable for the differentiation and non-pathogenic functions of Th17 cells. These results indicate that Satb1 regulates the specific gene expression and function of effector Th17 cells in tissue inflammation.


Subject(s)
Inflammation/immunology , Matrix Attachment Region Binding Proteins/metabolism , Th17 Cells/immunology , Animals , Biomarkers/metabolism , Encephalitis , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Genetic Loci , Inflammation/pathology , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Spinal Cord/metabolism
11.
Methods Mol Biol ; 1585: 141-153, 2017.
Article in English | MEDLINE | ID: mdl-28477193

ABSTRACT

IL-9-producing Th9 cell is a novel Th cell subset involved in type II allergic inflammations such as asthma. Th9 cells can be induced from naïve Th cells in the presence of IL-4 and TGF-ß. It is also well established that downstream signals of IL-4 and TGF-ß, including STAT6, IRF4, Smad, and PU.1, directly mediate IL-9 production in Th9 cells. In this chapter we describe the methods of flow cytometry, qPCR and western blot analysis to determine the expression or activation of these transcription factors downstream of IL-4 and TGF-ß.


Subject(s)
Interleukin-4/metabolism , Transforming Growth Factor beta/metabolism , Blotting, Western , Flow Cytometry , Humans , Interleukin-9/metabolism , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Helper-Inducer/metabolism
13.
Nat Immunol ; 18(2): 173-183, 2017 02.
Article in English | MEDLINE | ID: mdl-27992401

ABSTRACT

Most Foxp3+ regulatory T (Treg) cells develop in the thymus as a functionally mature T cell subpopulation specialized for immune suppression. Their cell fate appears to be determined before Foxp3 expression; yet molecular events that prime Foxp3- Treg precursor cells are largely obscure. We found that Treg cell-specific super-enhancers (Treg-SEs), which were associated with Foxp3 and other Treg cell signature genes, began to be activated in Treg precursor cells. T cell-specific deficiency of the genome organizer Satb1 impaired Treg-SE activation and the subsequent expression of Treg signature genes, causing severe autoimmunity due to Treg cell deficiency. These results suggest that Satb1-dependent Treg-SE activation is crucial for Treg cell lineage specification in the thymus and that its perturbation is causative of autoimmune and other immunological diseases.


Subject(s)
Cell Differentiation/immunology , Forkhead Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Regulatory/physiology , Transcriptional Activation/immunology , Animals , Autoimmunity , Cell Lineage , Cells, Cultured , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Immune Tolerance , Male , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Precursor Cells, T-Lymphoid/physiology
14.
Biochem Biophys Res Commun ; 477(3): 413-8, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27329810

ABSTRACT

Human AlkB homolog 8 (ALKBH8) is highly expressed in high-grade, superficially and deeply invasive bladder cancer. Moreover, ALKBH8 knockdown induces apoptosis in bladder cancer cells. However, the underlying anti-apoptotic mechanism of ALKBH8 in bladder cancer cells has thus far remained unclear. Moreover, there is no direct evidence that highly expressed ALKBH8 is involved in tumor progression in vivo. We here show that ALKBH8 knockdown induced apoptosis via downregulating the protein expression of survivin, an anti-apoptotic factor also exhibiting increased levels in bladder cancer. We also clarify that ALKBH8 transgenic mice showed an accelerated rate of bladder tumor mass and invasiveness in an N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced bladder cancer model. These findings suggest that the high expression of ALKBH8 is critical for the growth and progression of bladder cancer.


Subject(s)
AlkB Homolog 8, tRNA Methyltransferase/physiology , Inhibitor of Apoptosis Proteins/metabolism , Urinary Bladder Neoplasms/pathology , AlkB Homolog 8, tRNA Methyltransferase/genetics , Animals , Apoptosis/physiology , Cell Line, Tumor , Disease Progression , Humans , Mice , Mice, Transgenic , Survivin , Urinary Bladder Neoplasms/metabolism
15.
Mol Cancer Res ; 13(3): 565-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25381221

ABSTRACT

UNLABELLED: Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. To identify a therapeutic target for ccRCC, miRNA expression signatures from ccRCC clinical specimens were analyzed. miRNA microarray and real-time PCR analyses revealed that miR-629 expression was significantly upregulated in human ccRCC compared with adjacent noncancerous renal tissue. Functional inhibition of miR-629 by a hairpin miRNA inhibitor suppressed ccRCC cell motility and invasion. Mechanistically, miR-629 directly targeted tripartite motif-containing 33 (TRIM33), which inhibits the TGFß/Smad signaling pathway. In clinical ccRCC specimens, downregulation of TRIM33 was observed with the association of both pathologic stages and grades. The miR-629 inhibitor significantly suppressed TGFß-induced Smad activation by upregulating TRIM33 expression and subsequently inhibited the association of Smad2/3 and Smad4. Moreover, a miR-629 mimic enhanced the effect of TGFß on the expression of epithelial-mesenchymal transition-related factors as well as on the motility and invasion in ccRCC cells. These findings identify miR-629 as a potent regulator of the TGFß/Smad signaling pathway via TRIM33 in ccRCC. IMPLICATIONS: This study suggests that miR-629 has biomarker potential through its ability to regulate TGFß/Smad signaling and accelerate ccRCC cell motility and invasion.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , MicroRNAs/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Mitochondrial Proteins/metabolism , Neoplasm Metastasis , Signal Transduction , Transforming Growth Factor beta/metabolism
16.
Mol Cancer Res ; 12(12): 1807-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25092917

ABSTRACT

UNLABELLED: Clear cell renal cell carcinoma (ccRCC) is the most common histologically defined subtype of renal cell carcinoma (RCC). To define the molecular mechanism in the progression of ccRCC, we focused on LOX-like protein 2 (LOXL2), which is critical for the first step in collagen and elastin cross-linking. Using exon array analysis and quantitative validation, LOXL2 was shown to be significantly upregulated in clinical specimens of human ccRCC tumor tissues, compared with adjacent noncancerous renal tissues, and this elevated expression correlated with the pathologic stages of ccRCC. RNAi-mediated knockdown of LOXL2 resulted in marked suppression of stress-fiber and focal adhesion formation in ccRCC cells. Moreover, LOXL2 siRNA knockdown significantly inhibited cell growth, migration, and invasion. Mechanistically, LOXL2 regulated the degradation of both integrins α5 (ITGAV5) and ß1 (ITGB1) via protease- and proteasome-dependent systems. In clinical ccRCC specimens, the expression levels of LOXL2 and integrin α5 correlated with the pathologic tumor grades. In conclusion, LOXL2 is a potent regulator of integrin α5 and integrin ß1 protein levels and functions in a tumor-promoting capacity in ccRCC. IMPLICATIONS: This is the first report demonstrating that LOXL2 is highly expressed and involved in ccRCC progression by regulating the levels of integrins α5 and ß1.


Subject(s)
Amino Acid Oxidoreductases/genetics , Carcinoma, Renal Cell/pathology , Integrin alpha5/metabolism , Integrin beta1/metabolism , Kidney Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Amino Acid Oxidoreductases/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...