Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(1): e0170119, 2017.
Article in English | MEDLINE | ID: mdl-28103299

ABSTRACT

OBJECTIVE: Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation behavior. METHOD: Stroke fallers (n = 10), stroke non-fallers (n = 13), and healthy controls (n = 23) participated. In the main task, participants walked for 4 m and passed through apertures of various widths (0.9-1.3 times the participant's shoulder width). Accidental contact with the frame of an aperture and kinematic characteristics at the moment of aperture crossing were measured. Participants also performed a perceptual judgment task to measure the accuracy of their perceived aperture passability. RESULTS AND DISCUSSION: Stroke fallers made frequent contacts on their paretic side; however, the contacts were not frequent when they penetrated apertures from their paretic side. Stroke fallers and non-fallers rotated their body with multiple steps, rather than a single step, to deal with their motor paralysis. Although the minimum passable width was greater for stroke fallers, the body rotation angle was comparable among groups. This suggests that frequent contact in stroke fallers was due to insufficient body rotation. The fact that there was no significant group difference in the perceived aperture passability suggested that contact occurred mainly due to locomotor factors rather than perceptual factors. Two possible explanations (availability of vision and/or attention) were provided as to why accidental contact on the paretic side did not occur frequently when stroke fallers penetrated the apertures from their paretic side.


Subject(s)
Spatial Navigation/physiology , Stroke/physiopathology , Walking/physiology , Biomechanical Phenomena/physiology , Case-Control Studies , Female , Humans , Male , Middle Aged , Movement/physiology
2.
Int J Rehabil Res ; 38(4): 338-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26288120

ABSTRACT

The aim of this pilot study was to investigate the feasibility of high-speed gait training with an exoskeleton robot hybrid assistive limb (HAL) in patients with chronic stroke, and to examine the efficacy of eight sessions (8 weeks) of gait training with a HAL compared with conventional physical therapy. Eighteen patients with chronic stroke were included in this study (nine each in the HAL and control groups). The HAL group underwent high-speed gait training with the HAL once a week for 8 weeks (20 min/session). The control group underwent conventional physical therapy for gait disturbance. Outcome measures were walking speed, number of steps, and cadence during a 10 m walking test, a timed up and go test, a functional reach test, and the Berg Balance Scale. Assessments were performed in the absence of the HAL before training and after the fourth and eighth training sessions. All patients in the HAL group completed the high-speed gait training without adverse events. The HAL group improved significantly in walking speed (55.9% increase, P<0.001), number of steps (17.6% decrease, P<0.01), and cadence (32.8% increase, P<0.001) during the 10 m walking test. The patients also exhibited significant improvements in the timed up and go test, the functional reach test, and the Berg Balance Scale after HAL training (P<0.01 in all). No statistical time-dependent changes were observed in any parameter in the control group. For chronic stroke patients, high-speed gait training with a HAL appears to be feasible and effective in improving gait and balance dysfunction despite the limitations of this nonrandomized pilot study.


Subject(s)
Acceleration , Exercise Therapy/instrumentation , Exoskeleton Device , Gait Disorders, Neurologic/rehabilitation , Paresis/rehabilitation , Postural Balance , Stroke Rehabilitation , Therapy, Computer-Assisted/instrumentation , Aged , Chronic Disease , Cohort Studies , Disability Evaluation , Feasibility Studies , Female , Gait Disorders, Neurologic/diagnosis , Humans , Male , Middle Aged , Paresis/diagnosis , Physical Therapy Modalities , Pilot Projects , Stroke/diagnosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...