Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Bank ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468823

ABSTRACT

Platelet Rich Plasma (PRP) contains high concentrations of growth factors, therefore, PRP activation results in their release, stimulating the process of healing and regeneration. The study was conducted to check whether activated platelet-rich plasma (aPRP) treatment can improve regeneration of the endometrium in an experimental model of ethanol-induced disturbed endometrium. Seventy-two female Wistar rats were randomly assigned into the control group, disturbed endometrium (DE) group and aPRP treated group. Activation of PRP was performed by adding thrombin. All the animals were sacrificed on day 1, day 3, day 6 and day 9 and samples were taken from the miduterine horn. Quantification of Cytokine and chemokine profiles of activated and non-activated PRP for CCL2, TNF- α, IL-1ß, CXCL8, CXCL10, IL2, IL4, IL-6 IL-10, IL-12, IL-17A, TGF- ß, IFN-γ was carried out. Functional and structural recovery of the endometrium was analyzed by hematoxylin-eosin (HE) and immunohistochemical (IHC) analyses. HE confirmed proliferated epithelial lining and stromal reconstruction with decreased fibrosis in PRP treated group compared to the DE group. Epithelial thickness in aPRP treated on day 1, day 3, day 6 and day 9 revealed an significant increase (p ≤ 0.05). Significantly stronger IHC expression of alpha smooth muscle actin, Cytokeratin 18, Cytokeratin 19, Connexin-40, E-Cadherin, Claudin-1, Zona Occludin-1was found in the aPRP treated group compared to the DE group. Furthermore, aPRP treatment was associated with birth of live pups. Our results suggest that intrauterine administration of aPRP stimulated and accelerated the regeneration of endometrium in the murine model of disturbed endometrium.

2.
Adv Exp Med Biol ; 1409: 51-81, 2023.
Article in English | MEDLINE | ID: mdl-36038807

ABSTRACT

A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.


Subject(s)
Spinal Cord Injuries , Tissue Engineering , Humans , Tissue Scaffolds , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord , Biocompatible Materials , Nerve Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...