Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(16): 7044-7052, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38563761

ABSTRACT

We synthesized a perovskite-type RbNbO3 at 1173 K and 4 GPa from non-perovskite RbNbO3 and investigated its crystal structure and properties towards ferroelectric material design. Single-crystal X-ray diffraction analysis revealed an orthorhombic cell in the perovskite-type structure (space group Amm2, no. 38) with a = 3.9937(2) Å, b = 5.8217(3) Å, and c = 5.8647(2) Å. This non-centrosymmetric space group is the same as the ferroelectric BaTiO3 and KNbO3 but with enhanced distortion. Structural transition from orthorhombic to two successive tetragonal phases (Tetra1 at 493 K, Tetra2 at 573 K) was observed, maintaining the perovskite framework before reverting to the triclinic ambient phase at 693 K, with no structural changes between 4 and 300 K. The first transition is similar to that of KNbO3, whereas the second to Tetra2, marked by c-axis elongation and a significant cp/ap ratio jump (from 1.07 to 1.43), is unique. This distortion suggests a transition similar to that of PbVO3, where an octahedron's oxygen separates along the c-axis, forming a pyramid. Ab initio calculations simulating negative pressure like thermal expansion predicted this phase transition (cp/ap = 1.47 at -1.2 GPa), aligning with experimental findings. Thermal analysis revealed two endothermic peaks, with the second transition entailing a greater enthalpy change and volume alteration. Strong second harmonic generation signals were observed across Ortho, Tetra1, and Tetra2 phases, similar to BaTiO3 and KNbO3. Permittivity increased during the first transition, although the second transition's effects were limited by thermal expansion-induced bulk sample collapse. Perovskite-type RbNbO3 emerges as a promising ferroelectric material.

2.
Proc Natl Acad Sci U S A ; 119(40): e2208717119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161890

ABSTRACT

Ice polymorphs show extraordinary structural diversity depending on pressure and temperature. The behavior of hydrogen-bond disorder not only is a key ingredient for their structural diversity but also controls their physical properties. However, it has been a challenge to determine the details of the disordered structure in ice polymorphs under pressure, because of the limited observable reciprocal space and inaccuracies related to high-pressure techniques. Here, we present an elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K, from both single-crystal and powder neutron-diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these findings are related to proton dynamics, which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

3.
J Biotechnol ; 280: 55-61, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29678391

ABSTRACT

Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8-27 g dry cell weight (DCW) floor m-2 d-1. Alkanes of heptadecane (C17H36) or pentadecane (C15H32) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s-1) of the cloth with microalgae increasing approximately 20-50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel.


Subject(s)
Biofuels/microbiology , Biotechnology/methods , Cyanobacteria/growth & development , Biomass , Bioreactors/microbiology , Cyanobacteria/metabolism , Microalgae/growth & development , Microalgae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...