Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 458: 43-53, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33460729

ABSTRACT

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder that can vary considerably in severity. Autistic traits are distributed continuously across populations, even in sub-clinical individuals. Serotonin transporter-gene polymorphic region (5-HTTLPR) has been studied as a candidate genetic factor related to ASD, however results have been inconsistent. 5-HTTLPR is implicated in the function of medial prefrontal cortex (mPFC), a region associated with the social abnormalities found in ASD. Here we hypothesize that autistic traits are affected by the 5-HTTLPR genotype indirectly through mPFC mediation. Using near-infrared spectroscopy (NIRS), we first examined mPFC activation in people with ASD when they performed a facial affect-labeling task. Compared with a typical development group, the ASD group showed significantly lower mPFC activation during the task. Using the same task paradigm, we next investigated the relationship between autistic traits and 5-HTTLPR in sub-clinical participants, and whether associations were mediated by mPFC function. Correlation analyses indicated that participants with a large number of 5-HTTLPR L-alleles had high-level autistic traits related to social skills and low right mPFC activation. We also observed a significant negative correlation between autistic traits related to social skills and right mPFC activation. Structural equation analysis suggested a significant indirect effect of 5-HTTLPR on Autism-Spectrum Quotients, with right mPFC activation acting as a mediator. These results suggest that the diverse autistic traits related to social skills seen in the general population are associated with the 5-HTTLPR genotype, and that this association is mediated by right mPFC function.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Individuality , Polymorphism, Genetic , Serotonin Plasma Membrane Transport Proteins/genetics
2.
Sci Adv ; 3(6): e1603001, 2017 06.
Article in English | MEDLINE | ID: mdl-28691086

ABSTRACT

Serotonin is a critical modulator of cortical function, and its metabolism is defective in autism spectrum disorder (ASD) brain. How serotonin metabolism regulates cortical physiology and contributes to the pathological and behavioral symptoms of ASD remains unknown. We show that normal serotonin levels are essential for the maintenance of neocortical excitation/inhibition balance, correct sensory stimulus tuning, and social behavior. Conversely, low serotonin levels in 15q dup mice (a model for ASD with the human 15q11-13 duplication) result in impairment of the same phenotypes. Restoration of normal serotonin levels in 15q dup mice revealed the reversibility of a subset of ASD-related symptoms in the adult. These findings suggest that serotonin may have therapeutic potential for discrete ASD symptoms.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Brain/metabolism , Brain/physiopathology , Chromosomes , DNA Copy Number Variations , Serotonin/metabolism , Animals , Autism Spectrum Disorder/psychology , Disease Models, Animal , Glucose/metabolism , Mice , Models, Biological , Pyramidal Cells/metabolism , Social Behavior , Somatosensory Cortex/metabolism , Somatosensory Cortex/physiopathology , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...