Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 77(12): 2371-7, 2013.
Article in English | MEDLINE | ID: mdl-24317048

ABSTRACT

The levels of food allergens in gamma-irradiated soybean (0, 2.5, 5, 7.5, 10, 20, and 30 kGy) were investigated by immunoblotting and ELISA, using allergen-specific antibodies and patient serum. After 3 months of storage, Coomassie brilliant blue (CBB) staining indicated similar total protein profiles among the treatments, but that some proteins were degraded by irradiation at high doses. Immunoblotting with specific antibodies for major soybean allergens (ß-conglycinin, Gly m Bd 30 K, soybean trypsin inhibitor, and Gly m 4) resulted in apparent band profiles and intensities that were not significantly changed by irradiation. Competitive inhibition ELISA analyses suggested that there were no significant changes in the allergen contents, except for a decrease in the soybean trypsin inhibitor. The patient IgE binding allergenic protein patterns were not changed by irradiation up to 30 kGy. ELISA using patient serum also revealed that the IgE reactivity to the irradiated soybean extract did not increase from the level of the control, but that the reactivity to some patient serum IgE was significantly decreased by irradiation.


Subject(s)
Allergens/metabolism , Gamma Rays , Glycine max/immunology , Glycine max/radiation effects , Allergens/analysis , Allergens/immunology , Antibody Specificity , Dose-Response Relationship, Radiation , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Glycine max/metabolism
2.
Int J Food Microbiol ; 156(3): 204-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22534354

ABSTRACT

Fusarium proliferatum is a plant pathogenic fungus associated with crops such as asparagus and corn, and it possesses the ability to produce a range of mycotoxins, including fumonisins. In Asia, rice (Oryza sativa) is a staple cereal and is occasionally colonized by this fungus without obvious physiological changes. F. proliferatum is closely related to Gibberella fujikuroi (anamorph F. fujikuroi) responsible for Bakanae disease in rice; however there are few reports of F. proliferatum as a rice pathogen. In this study, we examined the pathogenic potential of F. proliferatum in rice plants with respect to browning, fumonisin production, and survival rates in rice grains. Fungal inoculation was conducted by spraying a conidial suspension of F. proliferatum onto rice plants during the flowering period. Browning was found on the stalk, leaf, and ear of rice. Fumonisin B(1) was detected at levels from trace to 21 ng/g grains, using tandem mass spectrometry. Fungal recovery after 6 months indicated that F. proliferatum had high affinity to rice plants being still viable in grains. From this study, it can be concluded that F. proliferatum is a possible pathogen of rice and possesses a potential to produce fumonisin B(1) in rice grains in the field.


Subject(s)
Fumonisins/metabolism , Fusarium/pathogenicity , Oryza/microbiology , Fusarium/metabolism , Mycotoxins/analysis , Spores, Fungal/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...