Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Domest Anim Endocrinol ; 72: 106447, 2020 07.
Article in English | MEDLINE | ID: mdl-32403000

ABSTRACT

We aimed to elucidate the effects of PGE2 and PGF2α on the in vitro maturation (IVM) of bovine oocytes. First, cumulus-oocyte complexes were matured in the media supplemented with or without PGE2, PGF2α, or PGE2 plus PGF2α for the final 24, 12, or 6 h of culture. Then, the cumulus-oocyte complexes were matured in the absence or presence of a PG endoperoxide synthase 2 (PTGS2) enzyme inhibitor (NS398) supplemented with PGE2, PGF2α, or PGE2 plus PGF2α. Finally, the expression of genes associated with PGs activity in cumulus cells (PTGS2, PG E-synthase-1 [PTGES1], and aldo-keto reductase 1 [AKR1B1]) or oocytes (receptors for PGE2 [PTGER2] and PGF2α [PTGFR]) of different competencies was quantified. Supplementation of the IVM medium with PGs did not improve in vitro embryo production or embryo quality (P > 0.05). During maturation, the relative abundance of PTGS2 transcripts increased (P < 0.05) only in the less-competent group, whereas those of PTGES1 increased in the less-competent and in the more-competent groups. Conversely, AKR1B1 expression decreased only in the less-competent group (P < 0.05). Receptors for the PGE2 and PGF2α genes were very low or undetectable in oocytes. In conclusion, PGE2 and PGF2α are not recommended for media supplementation during maturation because they have no effect on embryo development. Although genes related to PGs activity are differentially expressed in cumulus cells of cumulus-oocyte complexes of different competence during maturation, the expression of PGE2 and PGF2α receptor genes was either not detectable or was detected at low levels in oocytes.


Subject(s)
Dinoprost/pharmacology , Dinoprostone/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Animals , Cattle , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental/drug effects , Nitrobenzenes/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sulfonamides/pharmacology
2.
Reprod Fertil Dev ; 32(7): 690-696, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32317093

ABSTRACT

We aimed to analyse the histone acetylation status and expression profile of genes involved in histone acetylation (histone acetyltransferase 1 (HAT1), lysine acetyltransferase 2A (KAT2A), histone deacetylase 1(HDAC1), HDAC2 and HDAC3) in bovine oocytes of different competences during invitro maturation (IVM). Cumulus-oocyte complexes were recovered from two groups of follicles: minor follicles (1.0-3.0mm in diameter), classified as low competence (LC) and large follicles (6.0-8.0mm in diameter) classified as high competence (HC). Oocytes were submitted to IVM for 0, 8 and 24h and stored for analysis. Acetylation status of histone H4 on lysine K5, K6, K12 and K16 was assessed by immunohistochemistry. For gene expression, mRNA levels were determined by real-time quantitative polymerase chain reaction. All oocytes, regardless of their competence, showed a gradual decrease (P<0.05) in acetylation signals during IVM. From 0 to 8h of maturation, an increase (P<0.05) in the relative abundance of HAT1 mRNA was observed only in the HC oocytes. In this group, higher (P<0.05) mRNA levels of HDAC1 at 8h of maturation were also observed. In conclusion, in the present study, LC oocytes were shown to have adequate acetylation levels for the resumption and progression of meiosis; however, these oocytes do not have the capacity to synthesise RNA during IVM as the HC oocytes do.


Subject(s)
Cattle , Histone Acetyltransferases/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/enzymology , Acetylation , Animals , Cumulus Cells/physiology , Female , Histone Acetyltransferases/genetics , Histones/metabolism , Lysine/metabolism , Oocytes/growth & development , Oogenesis/genetics , Oogenesis/physiology , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...