Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(3): 744-750, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38221741

ABSTRACT

The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.


Subject(s)
Intrinsically Disordered Proteins , Scattering, Small Angle , X-Rays , X-Ray Diffraction , Protein Conformation , Intrinsically Disordered Proteins/chemistry
2.
Nat Commun ; 12(1): 5301, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489423

ABSTRACT

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.


Subject(s)
Active Transport, Cell Nucleus/genetics , C9orf72 Protein/chemistry , Peptides/chemistry , beta Karyopherins/chemistry , Binding Sites , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cloning, Molecular , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Humans , Models, Molecular , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Peptides/genetics , Peptides/metabolism , Phase Transition , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , beta Karyopherins/antagonists & inhibitors , beta Karyopherins/genetics , beta Karyopherins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...