Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 104(9): 1001-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25116643

ABSTRACT

Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.


Subject(s)
Asparagus Plant/virology , Ilarvirus/physiology , Plant Diseases/virology , Pollen/virology , Cross Protection , Flowers/cytology , Flowers/virology , Host-Pathogen Interactions , Ilarvirus/isolation & purification , Immunohistochemistry , In Situ Hybridization , Meristem/cytology , Meristem/virology , Plant Shoots/cytology , Plant Shoots/virology , Pollen/cytology , Pollination , Seedlings/cytology , Seedlings/virology , Seeds/cytology , Seeds/virology , Nicotiana/cytology , Nicotiana/virology
2.
Life Sci ; 118(2): 200-5, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-24291377

ABSTRACT

AIMS: There is a growing body of evidence suggesting that epigallocatechin gallate (EGCG), a major catechin isolated from green tea, has several beneficial effects, such as anti-oxidant and anti-inflammatory activities. However, whether treatment with EGCG can suppress the endothelin-1 (ET-1)-induced contraction in carotid arteries from type 2 diabetic rats is unknown, especially at the chronic stage of the disease. We hypothesized that long-term treatment with EGCG would attenuate ET-1-induced contractions in type 2 diabetic arteries. MAIN METHODS: Otsuka Long-Evans Tokushima fatty (OLETF) rats (43 weeks old) were treated with EGCG (200 mg/kg/day for 2 months, p.o.), and the responsiveness to ET-1, phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) was measured in common carotid artery (CA) from EGCG-treated and -untreated OLETF rats and control Long-Evans Tokushima Otsuka (LETO) rats. KEY FINDINGS: In OLETF rats, EGCG attenuated responsiveness to ET-1 in CA compared to untreated groups. However, EGCG did not alter PE-induced contractions in CA from OLETF rats. In endothelium-denuded arteries, EGCG did not affect ET-1-induced contractions in either the OLETF or LETO group. Acetylcholine-induced relaxation was increased by EGCG treatment in CA from the OLETF group. The expressions of ET receptors, endothelial nitric oxide synthase, superoxide dismutases, and gp91(phox) [an NAD(P)H oxidase component] in CA were not altered by EGCG treatment in either group. SIGNIFICANCE: Our data suggest that, within the timescale investigated here, EGCG attenuates ET-1-induced contractions in CA from type 2 diabetic rats, and one of the mechanisms may involve normalizing endothelial function.


Subject(s)
Carotid Arteries/physiopathology , Catechin/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Vasoconstriction/drug effects , Acetylcholine/pharmacology , Animals , Carotid Arteries/drug effects , Catechin/pharmacology , Catechin/therapeutic use , Chronic Disease , Endothelin-1 , In Vitro Techniques , Male , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitroprusside/pharmacology , Phenylephrine , Rats, Inbred OLETF , Receptors, Endothelin/metabolism , Superoxide Dismutase/metabolism , Vasodilation/drug effects
3.
Pflugers Arch ; 466(2): 331-42, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23900807

ABSTRACT

The dinucleotide uridine adenosine tetraphosphate (Up4A), which has both purine and pyrimidine moieties, was reported as a novel endothelium-derived contracting factor. Recently, growing evidence has suggested that Up4A plays an important role in regulation of the cardiovascular function. We previously demonstrated that Up4A-induced vasoconstrictions are altered in arteries from DOCA-salt hypertensive rats. We have assessed responses to Up4A shown by renal arteries from type 2 diabetic Goto-Kakizaki (GK) rats (42-46 weeks old) and identified the molecular mechanisms involved. Concentration-dependent contractions to Up4A were greater in renal arterial rings from the GK than age-matched control Wistar group. In both groups, the inhibition of nitric oxide synthase (with N (G)-nitro-L-arginine) increased the response to Up4A, whereas the inhibition of cyclooxygenase (COX) (with indomethacin) decreased the response. Specific inhibitors of COX-1 (valeroyl salicylate) and COX-2 (NS398), a thromboxane (TX) receptor (TP) antagonist (SQ29548), and P2 receptor antagonist (suramin) also decreased the response to Up4A. Protein expressions of COXs in renal arteries were greater in the GK than Wistar group. The production of TXB2 (a metabolite of TXA2) by Up4A did not differ between these groups. Concentration-dependent contractions to U46619, an agonist of the TP receptor, were greater in renal arteries from the GK than Wistar group. The expression of P2X1 and P2Y2 receptors did not differ between these groups. These results suggest that enhancement of the Up4A-induced contraction in renal arteries from GK rats may be attributable to the increased activation of COXs/TP receptor signaling.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Dinucleoside Phosphates/pharmacology , Receptors, Thromboxane/physiology , Renal Artery/drug effects , Vasoconstriction/drug effects , Animals , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Male , Nitric Oxide Synthase/antagonists & inhibitors , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...