Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108413

ABSTRACT

The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the ß subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.


Subject(s)
Nerve Tissue Proteins , Synapses , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Retina/metabolism , Photoreceptor Cells/metabolism , Presynaptic Terminals/metabolism
2.
Nat Commun ; 13(1): 1904, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393413

ABSTRACT

Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 ß-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 ß-polypeptides, indicating a critical role for protein-U in controlling the number of αß-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.


Subject(s)
Rhodobacter sphaeroides , Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Models, Molecular , Peptides/chemistry , Photosynthesis , Rhodobacter sphaeroides/metabolism
3.
Nat Commun ; 12(1): 6300, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728609

ABSTRACT

Rhodobacter (Rba.) sphaeroides is the most widely used model organism in bacterial photosynthesis. The light-harvesting-reaction center (LH1-RC) core complex of this purple phototroph is characterized by the co-existence of monomeric and dimeric forms, the presence of the protein PufX, and approximately two carotenoids per LH1 αß-polypeptides. Despite many efforts, structures of the Rba. sphaeroides LH1-RC have not been obtained at high resolutions. Here we report a cryo-EM structure of the monomeric LH1-RC from Rba. sphaeroides strain IL106 at 2.9 Å resolution. The LH1 complex forms a C-shaped structure composed of 14 αß-polypeptides around the RC with a large ring opening. From the cryo-EM density map, a previously unrecognized integral membrane protein, referred to as protein-U, was identified. Protein-U has a U-shaped conformation near the LH1-ring opening and was annotated as a hypothetical protein in the Rba. sphaeroides genome. Deletion of protein-U resulted in a mutant strain that expressed a much-reduced amount of the dimeric LH1-RC, indicating an important role for protein-U in dimerization of the LH1-RC complex. PufX was located opposite protein-U on the LH1-ring opening, and both its position and conformation differed from that of previous reports of dimeric LH1-RC structures obtained at low-resolution. Twenty-six molecules of the carotenoid spheroidene arranged in two distinct configurations were resolved in the Rba. sphaeroides LH1 and were positioned within the complex to block its channels. Our findings offer an exciting new view of the core photocomplex of Rba. sphaeroides and the connections between structure and function in bacterial photocomplexes in general.


Subject(s)
Bacterial Proteins/chemistry , Cryoelectron Microscopy/methods , Light-Harvesting Protein Complexes/chemistry , Membrane Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/metabolism , Dimerization , Light-Harvesting Protein Complexes/metabolism , Membrane Proteins/metabolism , Models, Molecular , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Conformation
4.
J Nutr ; 144(10): 1509-16, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25122651

ABSTRACT

BACKGROUND: Low placental fatty acid (FA) transport during the embryonic period has been suggested to result in fetal developmental disorders and various adult metabolic diseases, but the molecular mechanism by which FAs are transported through the placental unit remains largely unknown. OBJECTIVE: The aim of this study was to examine the distribution and functional relevance of FA binding protein (FABP), a cellular chaperone of FAs, in the mouse placenta. METHODS: We clarified the localization of FABPs and sought to examine their function in placental FA transport through the phenotypic analysis of Fabp3-knockout mice. RESULTS: Four FABPs (FABP3, FABP4, FABP5, and FABP7) were expressed with spatial heterogeneity in the placenta, and FABP3 was dominantly localized to the trophoblast cells. In placentas from the Fabp3-knockout mice (both sexes), the transport coefficients for linoleic acid (LA) were significantly reduced compared with those from wild-type mice by 25% and 44% at embryonic day (E) 15.5 and E18.5, respectively, whereas those for α-linolenic acid (ALA) were reduced by 19% and 17%, respectively. The accumulation of LA (18% and 27% at E15.5 and E18.5) and ALA (16% at E15.5) was also significantly less in the Fabp3-knockout fetuses than in wild-type fetuses. In contrast, transport and accumulation of palmitic acid (PA) were unaffected and glucose uptake significantly increased by 23% in the gene-ablated mice compared with wild-type mice at E18.5. Incorporation of LA (51% and 52% at 1 and 60 min, respectively) and ALA (23% at 60 min), but not PA, was significantly less in FABP3-knockdown BeWo cells than in controls, whereas glucose uptake was significantly upregulated by 51%, 50%, 31%, and 33% at 1, 20, 40, and 60 min, respectively. CONCLUSIONS: Collectively FABP3 regulates n-3 (ω-3) and n-6 (ω-6) polyunsaturated FA transport in trophoblasts and plays a pivotal role in fetal development.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Placenta/metabolism , Trophoblasts/metabolism , Animals , Biological Transport , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Protein 7 , Fatty Acid-Binding Proteins/genetics , Female , Fetus/drug effects , Fetus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pregnancy , Trophoblasts/drug effects , Up-Regulation
5.
Am J Pathol ; 184(9): 2505-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25041855

ABSTRACT

Kupffer cells (KCs) are involved in the progression of liver diseases such as hepatitis and liver cancer. Several members of the fatty acid binding proteins (FABPs) are expressed by tissue macrophages, and FABP7 is localized only in KCs. To clarify the role of FABP7 in the regulation of KC function, we evaluated pathological changes of Fabp7 knockout mice during carbon tetrachloride-induced liver injury. During liver injury in Fabp7 knockout mice, serum liver enzymes were increased, cytokine expression (tumor necrosis factor-α, monocyte chemoattractant protein-1, and transforming growth factor-ß) was decreased in the liver, and the number of KCs in the liver necrotic area was significantly decreased. Interestingly, in the FABP7-deficient KCs, phagocytosis of apoptotic cells was impaired, and expression of the scavenger receptor CD36 was markedly decreased. In chronic liver injury, Fabp7 knockout mice showed less fibrogenic response to carbon tetrachloride compared with wild-type mice. Taken together, FABP7 is involved in the liver injury process through its regulation of KC phagocytic activity and cytokine production. Such modulation of KC function by FABP7 may provide a novel therapeutic approach to the treatment of liver diseases.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Cytokines/biosynthesis , Fatty Acid-Binding Proteins/metabolism , Kupffer Cells/metabolism , Nerve Tissue Proteins/metabolism , Phagocytosis/physiology , Animals , Blotting, Western , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Enzyme-Linked Immunosorbent Assay , Fatty Acid-Binding Protein 7 , Flow Cytometry , Fluorescent Antibody Technique , Immunohistochemistry , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...